scispace - formally typeset
Search or ask a question
Author

Shirley A. Müller

Bio: Shirley A. Müller is an academic researcher from University of Basel. The author has contributed to research in topics: Scanning transmission electron microscopy & Fibril. The author has an hindex of 52, co-authored 103 publications receiving 10419 citations. Previous affiliations of Shirley A. Müller include Albert Einstein College of Medicine & University of Exeter.


Papers
More filters
Journal ArticleDOI
17 Nov 2006-Cell
TL;DR: A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins and, with the exception of the V-ATPase, contains numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.

2,030 citations

Journal ArticleDOI
TL;DR: Atomic-resolution structures of three amyloid polymorphs formed by an 11-residue peptide reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.
Abstract: The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-β amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale—including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy—we report the atomic-resolution (0.5 A) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.

473 citations

Journal ArticleDOI
01 Jan 2002-Micron
TL;DR: The novel combination of single molecule imaging and force spectroscopy which allows biomolecules to be imaged, and inter- and intramolecular forces to be measured, is reviewed.

386 citations

Journal ArticleDOI
28 Oct 2005-Science
TL;DR: It is reported that LcrV forms a distinct structure at the tip of the needle, the tip complex, which may explain its crucial role in the translocation process and its efficacy as the main protective antigen against plague.
Abstract: Many pathogenic bacteria use injectisomes to deliver effector proteins into host cells through type III secretion. Injectisomes consist of a basal body embedded in the bacterial membranes and a needle. In Yersinia, translocation of effectors requires the YopB and YopD proteins, which form a pore in the target cell membrane, and the LcrV protein, which assists the assembly of the pore. Here we report that LcrV forms a distinct structure at the tip of the needle, the tip complex. This unique localization of LcrV may explain its crucial role in the translocation process and its efficacy as the main protective antigen against plague.

362 citations

Journal ArticleDOI
TL;DR: In this paper, the atomic force microscope (AFM) tip and sample are adjusted by pH and electrolytes to distribute the force applied to the AFM tip over a large sample area.

354 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate is discussed and some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior is described.
Abstract: Peptides or proteins convert under some conditions from their soluble forms into highly ordered fibrillar aggregates. Such transitions can give rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we identify the diseases known to be associated with formation of fibrillar aggregates and the specific peptides and proteins involved in each case. We describe, in addition, that living organisms can take advantage of the inherent ability of proteins to form such structures to generate novel and diverse biological functions. We review recent advances toward the elucidation of the structures of amyloid fibrils and the mechanisms of their formation at a molecular level. Finally, we discuss the relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate and describe some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior.

5,897 citations

Journal ArticleDOI
TL;DR: How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functions of their individual membranes?
Abstract: Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?

5,720 citations

Journal ArticleDOI
TL;DR: It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease.
Abstract: Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, conside...

3,990 citations

Journal ArticleDOI
TL;DR: This work discloses that expression of Hsps can occur in nature, all species have hsp genes but they vary in the patterns of their expression, and Hsp expression can be correlated with resistance to stress, and species' thresholds for HSP expression are correlated with levels of stress that they naturally undergo.
Abstract: Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.

3,841 citations

Journal ArticleDOI
13 Jun 1996-Nature
TL;DR: Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.
Abstract: The folding of many newly synthesized proteins in the cell depends on a set of conserved proteins known as molecular chaperones. These prevent the formation of misfolded protein structures, both under normal conditions and when cells are exposed to stresses such as high temperature. Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.

3,522 citations