scispace - formally typeset
Search or ask a question
Author

Shiro Hikichi

Bio: Shiro Hikichi is an academic researcher from Kanagawa University. The author has contributed to research in topics: Ligand & Catalysis. The author has an hindex of 35, co-authored 105 publications receiving 3599 citations. Previous affiliations of Shiro Hikichi include Tokyo Institute of Technology & University of Tokyo.


Papers
More filters
Journal ArticleDOI
09 May 2003-Science
TL;DR: The effectiveness of this catalyst is evidenced by ≥99% selectivity to epoxide, ≥ 99% efficiency of H2O2 utilization, high stereospecificity, and easy recovery of the catalyst from the homogeneous reaction mixture.
Abstract: Epoxides are an important class of industrial chemicals that have been used as chemical intermediates. Catalytic epoxidation of olefins affords an interesting production technology. We found a widely usable green route to the production of epoxides: A silicotungstate compound, [gamma-SiW10O34(H2O)2]4-, is synthesized by protonation of a divacant, lacunary, Keggin-type polyoxometalate of [gamma-SiW10O36]8- and exhibits high catalytic performance for the epoxidation of various olefins, including propylene, with a hydrogen peroxide (H2O2) oxidant at 305 kelvin. The effectiveness of this catalyst is evidenced by >/=99% selectivity to epoxide, >/=99% efficiency of H2O2 utilization, high stereospecificity, and easy recovery of the catalyst from the homogeneous reaction mixture.

543 citations

Journal ArticleDOI
TL;DR: In this article, a series of hydroxo complexes of first-row divalent metal ions (Mn (1), Fe (2), Co (3), Ni (4), Cu (5), Zn (6)) was synthesized.
Abstract: By using the hindered tris(pyrazoly)borate ligand HB(3,5-iPr[sub 2]pz)[sub 3], (hydrotris(3,5-diisopropyl-1-pyrazolyl)-borate), a series of hydroxo complexes of first-row divalent metal ions (Mn (1), Fe (2), Co (3), Ni (4), Cu (5), Zn (6)) was synthesized. X-ray crystallography was applied to 1-5, establishing that all these hydroxo complexes have a dinuclear structure solely bridged with a bis(hydroxo) unit. The structure of 6 was characterized by spectroscopy, which indicates that 6 is monomeric. All these hydroxo complexes were found to react with CO[sub 2], even atmospheric CO[sub 2], to afford [mu]-carbonato dinuclear complexes of Mn (7), Fe (8), Co (9), Ni (10), Cu (11), and Zn (12). The molecular structures of the complexes 8-12 were determined. A variety of coordination modes of the carbonate group was seen. In 10 and 11, the carbonate group is bound to both metal centers bidentately in a symmetric fashion, while in 8 and 9, the carbonate coordination modes are described as an unsymmetric bidentate. The carbonate group in 12 is coordinated to one zinc ion bidentately, but it is bound to the other zinc ion unidentately. From IR data, the coordination mode of the carbonate group in 7 was suggested to be similar to those found inmore » 8 and 9. Thus, the order of the coordination distortions of the carbonate groups in this series of [mu]-carbonato dinuclear complexes is determined. 40 refs., 8 figs., 4 tabs.« less

266 citations

Journal ArticleDOI
TL;DR: In this article, the B−H stretching vibrations of the square-planar and trigonal-bipyramidal structures of rh(μ-Cl) 2 with KTpiPr or TlTpiPr were identified.

134 citations

Journal ArticleDOI
TL;DR: The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide as mentioned in this paper.
Abstract: The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this critical review the synthetic and design approaches to the many polyoxometalate cluster types are presented encompassing all the sub-types of polyxometalates including, isopolyoxometAlates, heteropolyoxometricalates, and reduced molybdenum blue systems.
Abstract: Polyoxometalates represent a diverse range of molecular clusters with an almost unmatched range of physical properties and the ability to form structures that can bridge several length scales. The new building block principles that have been discovered are beginning to allow the design of complex clusters with desired properties and structures and several structural types and novel physical properties are examined. In this critical review the synthetic and design approaches to the many polyoxometalate cluster types are presented encompassing all the sub-types of polyoxometalates including, isopolyoxometalates, heteropolyoxometalates, and reduced molybdenum blue systems. As well as the fundamental structure and bonding aspects, the final section is devoted to discussing these clusters in the context of contemporary and emerging interdisciplinary interests from areas as diverse as anti-viral agents, biological ion transport models, and materials science.

1,902 citations

Journal ArticleDOI
TL;DR: A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies and the role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water.
Abstract: ion step follows the decarboxylation, which is consistent with the deuterium isotopic effects observed for thymine 7-hydroxylase which indicate that an irreversible step (or steps) occurs prior to the C-H bond breaking.395 It has also been shown for prolyl 4-hydroxylase that a substrate-derived radical is generated in the reaction, which is consistent with a rebound mechanism.437 It is important to point out that no oxygen intermediate (i.e., bridged superoxo or oxo-ferryl) has been observed for any R-KGdependent enzyme. This warrants future theoretical and experimental study. A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies.422 Resting IPNS/FeII is also 6C and thus relatively stable toward dioxygen. Substrate ACV binds directly to FeII IPNS through its thiolate group, providing an open coordination position at the FeII. O2 can then react to form an FeIII-superoxo intermediate. This intermediate is suggested422 to perform the first hydrogen-atom abstraction step and close the â-lactam ring, resulting in the formation of the first water molecule and generating an FeIVdO-II intermediate, which completes the second ringclosure process by hydrogen-atom abstraction forming a thiazolidine ring. Previously proposed mechanisms of ACCO involved direct binding of cosubstrate ascorbate to the iron before O2 as part of the oxygen activation process.438,439 The EPR and ESEEM studies of the NO complex of ACCO suggested a quite different molecular mechanism for ACCO.435 An FeIII-superoxo intermediate is proposed. Whether it is preceded by a 6C f 5C process with substrate binding is presently under study.440 This intermediate is thought to initiate a radical process by single hydrogen-atom abstraction or electron-coupled proton transfer (PT)ion or electron-coupled proton transfer (PT) from the bound amino group. The resulting substrate radical may undergo spontaneous conversion into products. The role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water. Alternatively, the two-electron reduction of FeIIIsuperoxo by the cosubstrate ascorbate could result in an FeIVdO-II intermediate which initiates the radical reaction.435 4. Rieske-Type Dioxygenases Biochemical Characterization. The Rieske ironsulfur center is a two iron-two sulfur cluster ([2Fe2S]) which has a 2His (on one iron), 2Cys (on the other iron) coordination environment, instead of the 4Cys present in plant ferredoxins. It plays a key role in the electron transport pathway in membranebound cytochrome complexes as well as in some dioxygenases.441 The latter are mainly comprised of two protein components: a reductase containing flavin and a ferredoxin [2Fe-2S], and a terminal oxygenase containing a Rieske [2Fe-2S] cluster and a non-heme iron active site.442 Except for the recently reported alkene monooxygenase that has a binuclear iron site in its terminal oxygenase,10 most of the Rieske-type oxygenases have a mononuclear iron site, which is believed to be the site of dioxygen activation and substrate oxygenation.442,443 The majority of the Rieske-type mononuclear non-heme oxygenases form a family of enzymes which are aromatic-ring-hydroxylating dioxygenases. These catalyze the regioand stereospecific cis-dihydroxylation of an aromatic ring using dioxygen and NAD(P)H (Table 1). Examples include benzene dioxygenase (BDO, EC 1.14.12.3),444 phthalate dioxygenase (PDO, EC 1.14.12.7),445 toluene dioxygenase (EC 1.14.12.11),446 and naphthalene 1,2-dioxygenase (NDO, EC 1.14.12.12),447 which initiate the aerobic degradation of aromatic compounds in the soil bacteria and are targets for bioengineering in bioremediation. This step is the first step in the pathway that ultimately leads to ring cleavage by the intraand extradiol dioxygenases (sections II.B.2 and II.C.1).443 Besides these bacterial dioxygenases, other Rieske-type mononuclear non-heme oxygenases include anthranilate 1,2-dioxygenase (EC 1.14.12.1),448 which deaminates and decarboxylates the substrate to produce catechol; chlorophenylacetate 3,4-dioxygenase (EC 1.14.2.13),449 which converts substrate to catechol with chloride elimination; and 4-methoxybenzoate O-demethylase (putidamonooxin),450 which catalyzes the conversion of 4-methoxybenzoic acid to 4-hydroxybenzoic acid and formaldehyde. The reductase component is usually a monomer (MW ) 12-15 kDa) and utilizes flavin to mediate ET from the two-electron donor NAD(P)H to the oneelectron acceptor [2Fe-2S] cluster and is specific to each terminal oxygenase; other electron donors do not support efficient oxygenation.442 The crystal structure of phthalate dioxygenase reductase is available.451 The terminal oxygenases are large protein aggregates (MW ) 150-200 kDa) containing either multiples of R subunits (BDO R2, PDO R4) or an equimolar combination of R and â subunits (toluene dioxygenase R2â2, NDO R3â3). The R subunits contain a Rieske [2Fe-2S] cluster and a catalytic non-heme FeII center. â subunits do not seem to be involved in the catalytic function (vide infra). Kinetics. Steady-state kinetic studies coupled with various rapid reaction studies of the partial reactions of PDO allowed Ballou et al. to propose a kinetic scheme (Scheme 15).443 On the basis of steady state 278 Chemical Reviews, 2000, Vol. 100, No. 1 Solomon et al.

1,503 citations

Journal ArticleDOI
TL;DR: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments which play a great role in various areas ranging from catalysis, medicine, electrochemistry, photochromism,5 to magnetism.
Abstract: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments. They exhibit a great diversity of sizes, nuclearities, and shapes. They are built from the connection of {MOx} polyhedra, M being a d-block element in high oxidation state, usually VIV,V, MoVI, or WVI.1 While these species have been known for almost two centuries, they still attract much interest partly based on their large domains of applications. They play a great role in various areas ranging from catalysis,2 medicine,3 electrochemistry,4 photochromism,5 to magnetism.6 This palette of applications is intrinsically due to the combination of their added value properties (redox properties, large sizes, high negative charges, nucleophilicity...). Parallel to this domain, the organic-inorganic hybrids area has followed a similar expansion during the last 10 years. The concept of organic-inorganic hybrid materials * To whom correspondence should be addressed. E-mail: dolbecq@ chimie.uvsq.fr. Chem. Rev. 2010, 110, 6009–6048 6009

1,475 citations