scispace - formally typeset
Search or ask a question
Author

Shirwin M. Pockwinse

Bio: Shirwin M. Pockwinse is an academic researcher from University of Massachusetts Medical School. The author has contributed to research in topics: Gene expression & Transcription factor. The author has an hindex of 17, co-authored 40 publications receiving 3088 citations. Previous affiliations of Shirwin M. Pockwinse include University of Massachusetts Amherst.

Papers
More filters
Journal ArticleDOI
TL;DR: The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes.
Abstract: The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods–;proliferation, extracellular matrix maturation, and mineralization–;and 2) two restriction points to which the cells can progress but cannot pass without further signal–;the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle-and cell growth-regulated genes, produce a fibronectin/type I collagen extracel-lular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phos-phatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.

1,520 citations

Journal ArticleDOI
24 May 2004-Oncogene
TL;DR: An overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue is presented.
Abstract: We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.

489 citations

Journal ArticleDOI
TL;DR: In situ analyses of gene expression during osteoblast growth and differentiation at the single cell level establish that a population of proliferating calvarial‐derived cells subsequently expresses osteopontin and osteocalcin in cells developing into multilayered nodules with a tissue‐like organization.
Abstract: Primary cultures of calvarial derived normal diploid osteoblasts undergo a developmental expression of genes reflecting growth, extracellular matrix maturation, and mineralization during development of multilayered nodules having a bone tissue-like organization. Scanning electron microscopy of the developing cultures indicates the transition from the uniform distribution of cuboidal osteoblasts to multilayered nodules of smaller cells with a pronounced orientation of perinodular cells towards the apex of the nodule. Ultrastructural analysis of the nodule by transmission electron microscopy indicates that the deposition of mineral is confined to the extracellular matrix where cells appear more osteocytic. The cell body contains rough endoplasmic reticulum and golgi, while these intracellular organelles are not present in the developing cellular processes. To understand the regulation of temporally expressed genes requires an understanding of which genes are selectively expressed on a single cell basis as the bone tissue-like organization develops. In situ hybridization analysis using 35S labelled histone gene probes, together with 3H-thymidine labelling and autoradiography, indicate that greater than 98% of the pre-confluent osteoblasts are proliferating. By two weeks, both the foci of multilayered cells and internodular cell regions have down-regulated cell growth associated genes. Post-proliferatively, but not earlier, initial expression of both osteocalcin and osteopontin are restricted to the multilayered nodules where all cells exhibit expression. While total mRNA levels for osteopontin and osteocalcin are coordinately upregulated with an increase in mineral deposition, in situ hybridization has revealed that expression of osteocalcin and osteopontin occurs predominantly in cells associated with the developing nodules. In contrast, proliferating rat osteosarcoma cells (ROS 17/2.8) concomitantly express histone H4, along with osteopontin and osteocalcin. These in situ analyses of gene expression during osteoblast growth and differentiation at the single cell level establish that a population of proliferating calvarial-derived cells subsequently expresses osteopontin and osteocalcin in cells developing into multilayered nodules with a tissue-like organization.

176 citations

Journal ArticleDOI
TL;DR: The results suggest two of the requirements for AML-dependent transcription initiation by RNA polymerase II are association of AMl-1B with the nuclear matrix together with specific binding of AML to gene promoters.
Abstract: The AML/CBFα runt transcription factors are key regulators of hematopoietic and bone tissue-specific gene expression. These factors contain a 31-amino acid nuclear matrix targeting signal that supports association with the nuclear matrix. We determined that the AML/CBFα factors must bind to the nuclear matrix to exert control of transcription. Fusing the nuclear matrix targeting signal to the GAL4 DNA binding domain transactivates a genomically integrated GAL4 responsive reporter gene. These data suggest that AML/CBFα must associate with the nuclear matrix to effect transcription. We used fluorescence labeling of epitope-tagged AML-1B (CBFA2) to show it colocalizes with a subset of hyperphosphorylated RNA polymerase II molecules concentrated in foci and linked to the nuclear matrix. This association of AML-1B with RNA polymerase II requires active transcription and a functional DNA binding domain. The nuclear matrix domains that contain AML-1B are distinct from SC35 RNA processing domains. Our results suggest two of the requirements for AML-dependent transcription initiation by RNA polymerase II are association of AML-1B with the nuclear matrix together with specific binding of AML to gene promoters.

176 citations

Journal ArticleDOI
TL;DR: The hypothesis that hormones have differential effects on osteoblasts in relation to their stage of phenotype development is supported by selective morphological changes and changes in the level of gene expression at the single cell level.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal ArticleDOI
TL;DR: The role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis are reviewed to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis.
Abstract: The adult skeleton regenerates by temporary cellular structures that comprise teams of juxtaposed osteoclasts and osteoblasts and replace periodically old bone with new. A considerable body of evidence accumulated during the last decade has shown that the rate of genesis of these two highly specialized cell types, as well as the prevalence of their apoptosis, is essential for the maintenance of bone homeostasis; and that common metabolic bone disorders such as osteoporosis result largely from a derangement in the birth or death of these cells. The purpose of this article is 3-fold: 1) to review the role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis; 2) to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis; and 3) to highlight the implications of bone cell birth and death for a better understanding of the mechanism of action and efficacy of present and future pharmacotherapeutic agents for osteoporosis.

2,398 citations

Journal ArticleDOI
TL;DR: Tissue engineering in vitro and in vivo involves the interaction of cells with a material surface, where the nature of the surface can directly influence cellular response, ultimately affecting the rate and quality of new tissue formation.

1,337 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus are discussed.

1,140 citations

Journal ArticleDOI
TL;DR: Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylations to Pol II transcripts.
Abstract: Formation of mRNA 3′ ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3′ ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.

1,062 citations