scispace - formally typeset
Search or ask a question
Author

Shiv Kumar

Bio: Shiv Kumar is an academic researcher from Synchrotron Radiation Center. The author has contributed to research in topics: Medicine & Topological insulator. The author has an hindex of 26, co-authored 135 publications receiving 3273 citations. Previous affiliations of Shiv Kumar include National Tsing Hua University & Hiroshima University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used density functional theory and Monte Carlo method to predict the antiferromagnetic topological insulator (AFMTI) phase, which is hosted by the van der Waals layered compound MnBi$_2$Te$_4$.
Abstract: Despite immense advances in the field of topological materials, the antiferromagnetic topological insulator (AFMTI) state, predicted in 2010, has been resisting experimental observation up to now. Here, using density functional theory and Monte Carlo method we predict and by means of structural, transport, magnetic, and angle-resolved photoemission spectroscopy measurements confirm for the first time realization of the AFMTI phase, that is hosted by the van der Waals layered compound MnBi$_2$Te$_4$. An interlayer AFM ordering makes MnBi$_2$Te$_4$ invariant with respect to the combination of the time-reversal ($\Theta$) and primitive-lattice translation ($T_{1/2}$) symmetries, $S=\Theta T_{1/2}$, which gives rise to the $Z_2$ topological classification of AFM insulators, $Z_2$ being equal to 1 for this material. The $S$-breaking (0001) surface of MnBi$_2$Te$_4$ features a giant bandgap in the topological surface state thus representing an ideal platform for the observation of such long-sought phenomena as the quantized magnetoelectric coupling and intrinsic axion insulator state.

627 citations

Journal ArticleDOI
19 Dec 2019-Nature
TL;DR: In this paper, an intrinsic antiferromagnetic topological insulator, MnBi2Te4, is theoretically predicted and then realized experimentally, with implications for the study of exotic quantum phenomena, such as quantized magnetoelectric coupling and axion electrodynamics.
Abstract: Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. An intrinsic antiferromagnetic topological insulator, MnBi2Te4, is theoretically predicted and then realized experimentally, with implications for the study of exotic quantum phenomena.

377 citations

Journal ArticleDOI
TL;DR: A topological insulator with magnetic elements shows surprising conductive behavior on its surface, presenting either a hurdle to realizing exotic quantum phenomena or a boon to devices with new charge transport mechanisms as mentioned in this paper.
Abstract: A topological insulator with magnetic elements shows surprising conductive behavior on its surface, presenting either a hurdle to realizing exotic quantum phenomena or a boon to devices with new charge transport mechanisms.

285 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth.

281 citations

Journal ArticleDOI
TL;DR: In this paper, a modified photovoltaic thermal (PVT) double slope active solar still was designed and fabricated for remote locations and its performance has been experimentally evaluated under field conditions in natural and forced circulation mode (series and parallel).

145 citations


Cited by
More filters
Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: A review of the trend of development of photovoltaic/thermal technology, in particular the advancements in recent years and the future work required can be found in this article.

1,254 citations