scispace - formally typeset
Search or ask a question
Author

Shiva Raj Pokhrel

Bio: Shiva Raj Pokhrel is an academic researcher from Deakin University. The author has contributed to research in topics: Computer science & Multipath TCP. The author has an hindex of 14, co-authored 49 publications receiving 518 citations. Previous affiliations of Shiva Raj Pokhrel include College of Information Technology & Harvard University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates that the proposed idea of tuning the block arrival rate is provably online and capable of driving the system dynamics to the desired operating point and identifies the improved dependency on other blockchain parameters for a given set of channel conditions, retransmission limits, and frame sizes.
Abstract: We propose an autonomous blockchain-based federated learning (BFL) design for privacy-aware and efficient vehicular communication networking, where local on-vehicle machine learning (oVML) model updates are exchanged and verified in a distributed fashion. BFL enables oVML without any centralized training data or coordination by utilizing the consensus mechanism of the blockchain. Relying on a renewal reward approach, we develop a mathematical framework that features the controllable network and BFL parameters (e.g., the retransmission limit, block size, block arrival rate, and the frame sizes) so as to capture their impact on the system-level performance. More importantly, our rigorous analysis of oVML system dynamics quantifies the end-to-end delay with BFL, which provides important insights into deriving optimal block arrival rate by considering communication and consensus delays. We present a variety of numerical and simulation results highlighting various non-trivial findings and insights for adaptive BFL design. In particular, based on analytical results, we minimize the system delay by exploiting the channel dynamics and demonstrate that the proposed idea of tuning the block arrival rate is provably online and capable of driving the system dynamics to the desired operating point. It also identifies the improved dependency on other blockchain parameters for a given set of channel conditions, retransmission limits, and frame sizes. 1 However, a number of challenges (gaps in knowledge) need to be resolved in order to realise these changes. In particular, we identify key bottleneck challenges requiring further investigations, and provide potential future reserach directions. 1 An early version of this work has been accepted for presentation in IEEE WCNC Wksps 2020 [1] .

269 citations

Journal ArticleDOI
TL;DR: This article developed a decentralized paradigm for big data-driven cognitive computing (D2C), using federated learning and blockchain jointly, which can solve the problem of “data island” with privacy protection and efficient processing while blockchain provides incentive mechanism, fully decentralized fashion, and robust against poisoning attacks.
Abstract: Cognitive computing, a revolutionary AI concept emulating human brain's reasoning process, is progressively flourishing in the Industry 4.0 automation. With the advancement of various AI and machine learning technologies the evolution toward improved decision making as well as data-driven intelligent manufacturing has already been evident. However, several emerging issues, including the poisoning attacks, performance, and inadequate data resources, etc., have to be resolved. Recent research works studied the problem lightly, which often leads to unreliable performance, inefficiency, and privacy leakage. In this article, we developed a decentralized paradigm for big data-driven cognitive computing (D2C), using federated learning and blockchain jointly. Federated learning can solve the problem of “data island” with privacy protection and efficient processing while blockchain provides incentive mechanism, fully decentralized fashion, and robust against poisoning attacks. Using blockchain-enabled federated learning help quick convergence with advanced verifications and member selections. Extensive evaluation and assessment findings demonstrate D2C's effectiveness relative to existing leading designs and models.

197 citations

Journal ArticleDOI
TL;DR: A novel communication efficient and privacy preserving federated learning framework for enhancing the performance of Internet of Vehicles (IoV), wherein on-vehicle learning models are trained by exchanging inputs, outputs and their learning parameters locally.
Abstract: We propose a novel communication efficient and privacy preserving federated learning framework for enhancing the performance of Internet of Vehicles (IoV), wherein on-vehicle learning models are trained by exchanging inputs, outputs and their learning parameters locally. Moreover, we use analytic modeling as a tool for reasoning and developing the required IoV scenario and stabilize their data flow dynamics by considering TCP CUBIC streams over WiFi networks to prove our idea.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art technologies for separate mMTC and URLLC services are reviewed, and the authors identify key challenges from conflicting SOTA requirements, followed by potential approaches to prospective critical mMTC solutions at different layers.
Abstract: Massive machine-type communication (mMTC) and ultra-reliable and low-latency communication (URLLC) are two key service types in the fifth-generation (5G) communication systems, pursuing scalability and reliability with low-latency, respectively. These two extreme services are envisaged to agglomerate together into critical mMTC shortly with emerging use cases (e.g., wide-area disaster monitoring, wireless factory automation), creating new challenges to designing wireless systems beyond 5G. While conventional network slicing is effective in supporting a simple mixture of mMTC and URLLC, it is difficult to simultaneously guarantee the reliability, latency, and scalability requirements of critical mMTC (e.g., i 4ms latency, 10 6 devices/km 2 for factory automation) with limited radio resources. Furthermore, recently proposed solutions to scalable URLLC (e.g., machine learning aided URLLC for driverless vehicles) are ill-suited to critical mMTC whose machine type users have minimal energy budget and computing capability that should be (tightly) optimized for given tasks. To this end, our paper aims to characterize promising use cases of critical mMTC and search for their possible solutions. To this end, we first review the state-of-the-art (SOTA) technologies for separate mMTC and URLLC services and then identify key challenges from conflicting SOTA requirements, followed by potential approaches to prospective critical mMTC solutions at different layers.

72 citations

Proceedings ArticleDOI
25 Sep 2020
TL;DR: This work quantifies the probability of occurrence of forking events to analyze the uncertainty of the system towards the additional energy wastage, and develops pragmatic analyses of the expected energy consumption by considering the parameters like the number of miners as well as the power consumed during computing, block transfer and 6G channel dynamics.
Abstract: We consider a new blockchain empowered federated learning approach which uses wireless mobile miners at drones in the future sixth generation (6G) networks for a disaster response system. Our focus is on the blockchain latency, and energy consumption in the proposed architecture of the network of drones. Maintaining low delay in wireless communication between the drones is required to minimize blockchain forking events while performing blockchain operations. Therefore, we quantify the probability of occurrence of forking events to analyze the uncertainty of the system towards the additional energy wastage. The forked block (due to channel impairments or mobility) incurs re-computation energy. We develop pragmatic analyses of the expected energy consumption by considering the parameters like the number of miners as well as the power consumed during computing, block transfer and 6G channel dynamics for the system.

53 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1998

552 citations

Journal Article
TL;DR: Calculations are developed and examined to reduce the entire quantity of Wireless access points as well as their locations in almost any given atmosphere while with the throughput needs and the necessity to ensure every place in the area can achieve a minimum of k APs.
Abstract: More particularly, calculations are developed and examined to reduce the entire quantity of Wireless access points as well as their locations in almost any given atmosphere while with the throughput needs and the necessity to ensure every place in the area can achieve a minimum of k APs. This paper concentrates on using Wireless for interacting with and localizing the robot. We've carried out thorough studies of Wireless signal propagation qualities both in indoor and outside conditions, which forms the foundation for Wireless AP deployment and communication to be able to augment how human operators communicate with this atmosphere, a mobile automatic platform is developed. Gas and oil refineries could be a harmful atmosphere for various reasons, including heat, toxic gasses, and unpredicted catastrophic failures. When multiple Wireless APs are close together, there's a possible for interference. A graph-coloring heuristic can be used to find out AP funnel allocation. Additionally, Wireless fingerprinting based localization is developed. All of the calculations implemented are examined in real life situations using the robot developed and answers are promising. For example, within the gas and oil industry, during inspection, maintenance, or repair of facilities inside a refinery, people might be uncovered to seriously high temps to have a long time, to toxic gasses including methane and H2S, and also to unpredicted catastrophic failures.

455 citations

Journal Article
TL;DR: In this article, the optimal number of scheduled users in a massive MIMO system with arbitrary pilot reuse and random user locations is analyzed in a closed form, while simulations are used to show what happens at finite $M$, in different interference scenarios, with different pilot reuse factors, and for different processing schemes.
Abstract: Massive MIMO is a promising technique for increasing the spectral efficiency (SE) of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent transceiver processing. A common rule-of-thumb is that these systems should have an order of magnitude more antennas $M$ than scheduled users $K$ because the users’ channels are likely to be near-orthogonal when $M/K > 10$ . However, it has not been proved that this rule-of-thumb actually maximizes the SE. In this paper, we analyze how the optimal number of scheduled users $K^\star$ depends on $M$ and other system parameters. To this end, new SE expressions are derived to enable efficient system-level analysis with power control, arbitrary pilot reuse, and random user locations. The value of $K^\star$ in the large- $M$ regime is derived in closed form, while simulations are used to show what happens at finite $M$ , in different interference scenarios, with different pilot reuse factors, and for different processing schemes. Up to half the coherence block should be dedicated to pilots and the optimal $M/K$ is less than 10 in many cases of practical relevance. Interestingly, $K^\star$ depends strongly on the processing scheme and hence it is unfair to compare different schemes using the same $K$ .

363 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of the emerging applications of federated learning in IoT networks is provided, which explores and analyzes the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing and IoT privacy and security.
Abstract: The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.

319 citations