scispace - formally typeset
Search or ask a question
Author

Shiwen He

Bio: Shiwen He is an academic researcher from Central South University. The author has contributed to research in topics: Beamforming & MIMO. The author has an hindex of 20, co-authored 112 publications receiving 2317 citations. Previous affiliations of Shiwen He include Guilin University of Electronic Technology & Southeast University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of emerging computing paradigms from the perspective of end-edge-cloud orchestration is presented to discuss state-of-the-art research in terms of computation offloading, caching, security, and privacy.
Abstract: Sending data to the cloud for analysis was a prominent trend during the past decades, driving cloud computing as a dominant computing paradigm. However, the dramatically increasing number of devices and data traffic in the Internet-of-Things (IoT) era are posing significant burdens on the capacity-limited Internet and uncontrollable service delay. It becomes difficult to meet the delay-sensitive and context-aware service requirements of IoT applications by using cloud computing alone. Facing these challenges, computing paradigms are shifting from the centralized cloud computing to distributed edge computing. Several new computing paradigms, including Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet, have emerged to leverage the distributed resources at network edge to provide timely and context-aware services. By integrating end devices, edge servers, and cloud, they form a hierarchical IoT architecture, i.e., End-Edge-Cloud orchestrated architecture to improve the performance of IoT systems. This article presents a comprehensive survey of these emerging computing paradigms from the perspective of end-edge-cloud orchestration. Specifically, we first introduce and compare the architectures and characteristics of different computing paradigms. Then, a comprehensive survey is presented to discuss state-of-the-art research in terms of computation offloading, caching, security, and privacy. Finally, some potential research directions are envisioned for fostering continuous research efforts.

402 citations

Journal ArticleDOI
Jianyue Zhu1, Jiaheng Wang1, Yongming Huang1, Shiwen He1, Xiaohu You1, Luxi Yang1 
TL;DR: In this article, the authors investigated the optimal power allocation with given channel assignment over multiple channels under different performance criteria, namely, maximin fairness, weighted sum rate maximization, sum rate minimization with quality of service (QoS) constraints, and energy efficiency maximization with weights or QoS constraints in downlink NOMA systems.
Abstract: Non-orthogonal multiple access (NOMA) enables power-domain multiplexing via successive interference cancellation (SIC) and has been viewed as a promising technology for 5G communication. The full benefit of NOMA depends on resource allocation, including power allocation and channel assignment, for all users, which, however, leads to mixed integer programs. In the literature, the optimal power allocation has only been found in some special cases, while the joint optimization of power allocation and channel assignment generally requires exhaustive search. In this paper, we investigate resource allocation in downlink NOMA systems. As the main contribution, we analytically characterize the optimal power allocation with given channel assignment over multiple channels under different performance criteria. Specifically, we consider the maximin fairness, weighted sum rate maximization, sum rate maximization with quality of service (QoS) constraints, and energy efficiency maximization with weights or QoS constraints in NOMA systems. We also take explicitly into account the order constraints on the powers of the users on each channel, which are often ignored in the existing works, and show that they have a significant impact on SIC in NOMA systems. Then, we provide the optimal power allocation for the considered criteria in closed or semi-closed form. We also propose a low-complexity efficient method to jointly optimize channel assignment and power allocation in NOMA systems by incorporating the matching algorithm with the optimal power allocation. Simulation results show that the joint resource optimization using our optimal power allocation yields better performance than the existing schemes.

254 citations

Journal ArticleDOI
TL;DR: This paper proposes to first transform the original problem into an equivalent optimization problem in a parametric subtractive form, by which the solution is reached through a two-layer optimization scheme, and develops an iterative algorithm to solve it.
Abstract: In this paper we study energy efficient joint power allocation and beamforming for coordinated multicell multiuser downlink systems. The considered optimization problem is in a non-convex fractional form and hard to tackle. We propose to first transform the original problem into an equivalent optimization problem in a parametric subtractive form, by which we reach its solution through a two-layer optimization scheme. The outer layer only involves one-dimension search for the energy efficiency parameter which can be addressed using the bi-section search, the key issue lies in the inner layer where a non-fractional sub-problem needs to tackle. By exploiting the relationship between the user rate and the mean square error, we then develop an iterative algorithm to solve it. The convergence of this algorithm is proved and the solution is further derived in closed-form. Our analysis also shows that the proposed algorithm can be implemented in parallel with reasonable complexity. Numerical results illustrate that our algorithm has a fast convergence and achieves near-optimal energy efficiency. It is also observed that at the low transmit power region, our solution almost achieves the optimal sum rate and the optimal energy efficiency simultaneously; while at the middle-high transmit power region, a certain sum rate loss is suffered in order to guarantee the energy efficiency.

185 citations

Journal ArticleDOI
TL;DR: This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multiantenna mmWave systems with a limited number of RF chains and proposes efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures.
Abstract: In millimeter-wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low-cost analog radio frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multiantenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook-based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook-based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future challenges and future research challenges.
Abstract: Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth-generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the context of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.

1,551 citations

Posted Content
TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future research challenges regarding 5G and beyond.
Abstract: Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the content of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.

1,303 citations

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Abstract: Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to the rates of multiple gigabit per second per user Though mmWave can be readily used in stationary scenarios, such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond) We first summarize the recent channel measurement campaigns and modeling results Then, we discuss in detail recent progresses in multiple input multiple output transceiver design for mmWave communications After that, we provide an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed

887 citations