scispace - formally typeset
Search or ask a question
Author

Shixin Wu

Bio: Shixin Wu is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Graphene & Oxide. The author has an hindex of 33, co-authored 40 publications receiving 10001 citations. Previous affiliations of Shixin Wu include Agency for Science, Technology and Research.

Papers
More filters
Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
08 Oct 2012-Small
TL;DR: This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility and functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times.
Abstract: By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS2 thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS2 channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS2 thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS2 thin-film into the electronic sensor promises its potential application in various electronic devices.

842 citations

Journal ArticleDOI
TL;DR: In this paper, a straightforward one-step chemical method to in situ synthesis of Ag nanoparticles (Ag NPs) on single-layer graphene oxide and reduced graphene oxide (r-GO) surfaces is proposed.
Abstract: A straightforward one-step chemical method to in situ synthesis of Ag nanoparticles (Ag NPs) on single-layer graphene oxide (GO) and reduced graphene oxide (r-GO) surfaces is proposed. After simply heating the single-layer GO or r-GO adsorbed on 3-aminopropyltriethoxysilane (APTES)-modified Si/SiOx substrates in a silver nitrate aqueous solution at 75 °C, Ag NPs are synthesized and grow on the GO or r-GO surface. The obtained Ag NPs are investigated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Our method is unique and important since no reducing agent is required in the reaction. Au NPs on a GO surface are obtained by simply immersing the obtained Ag NPs on the GO surface in HAuCl4 solution.

714 citations

Journal ArticleDOI
TL;DR: In this article, a minireview of different kinds of graphene materials used in the electronic sensors and how they affect the device sensing performance is presented, focusing on the use of the reduced graphene oxide for the fabrication of cost-efficient, high-yield and highly reproducible sensing devices.
Abstract: Graphene, the archetypal two-dimensional material, is attracting increasing attention due to its unique and superior properties. The atomic thickness of the graphene sheet is extremely sensitive towards the change of local environment, making it an ideal channel material in field-effect transistors used as electronic sensors. In this minireview, we review the graphene-based electronic sensors for detection of various chemicals and biomolecules. We first introduce the different kinds of graphene materials used in the electronic sensors and how they affect the device sensing performance. Then we focus on the use of the reduced graphene oxide for the fabrication of cost-efficient, high-yield and highly reproducible sensing devices.

644 citations

Journal ArticleDOI
18 Jan 2010-Small
TL;DR: It is demonstrated that rGO films with a higher conductivity have a smaller work function and show a better performance in the fabricated solar cells.
Abstract: Monocrystalline ZnO nanorods (NRs) with high donor concentration are electrochemically deposited on highly conductive reduced graphene oxide (rGO) films on quartz. The film thickness, optical transmittance, sheet resistance, and roughness of rGO films are systematically studied. The obtained ZnO NRs on rGO films are characterized by X-ray diffraction, transmission electron microscopy, photoluminescence, and Raman spectra. As a proof-of-concept application, the obtained ZnO NRs on rGO are used to fabricate inorganic-organic hybrid solar cells with layered structure of quartz/rGO/ZnO NR/poly(3-hexylthiophene)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (P3HT/PEDOT:PSS)/Au. The observed power conversion efficiency (PCE, eta), approximately 0.31%, is higher than that reported in previous solar cells by using graphene films as electrodes. These results clearly demonstrate that rGO films with a higher conductivity have a smaller work function and show a better performance in the fabricated solar cells.

622 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.

4,187 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations