scispace - formally typeset
Search or ask a question
Author

Shiyong Zhao

Bio: Shiyong Zhao is an academic researcher from Shandong University. The author has contributed to research in topics: Copper & Monolayer. The author has an hindex of 17, co-authored 23 publications receiving 1280 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a probable reaction mechanism is proposed to interpret theoretically how hydrogen sulfide inhibits the corrosion of iron, which is attributed to formation of ferrous sulfide (FeS) protective film on the electrode surface.

428 citations

Journal ArticleDOI
Houyi Ma1, Shenhao Chen1, Bingsheng Yin1, Shiyong Zhao1, Xiangqian Liu1 
TL;DR: In this paper, four surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate, sodium oleate and polyoxyethylene sorbitan monooleate (TWEEN-80), were investigated in aerated 0.5 mol dm(-3) H2SO4 solutions, by means of electrochemical impedance spectroscopy.

260 citations

Journal ArticleDOI
Shiyong Zhao1, Shenhao Chen1, Shuyun Wang1, Degang Li1, Hou-Yi Ma1 
22 Mar 2002-Langmuir
TL;DR: In this article, cubic Pt nanoparticles were prepared by NaBH(4) reduction of K(2)PtCl(6) in an aqueous medium.
Abstract: Cubic Pt nanoparticles were prepared by NaBH(4) reduction of K(2)PtCl(6) in an aqueous medium. Under the effect of phase-transfer inducer HCl, Pt nanoparticles were transferred to a toluene solution containing dodecanethiol, forming a toluene organosol of cubic Pt nanoparticles protected by dodecanethiol. A monolayer of cubic Pt nanoparticles is obtained on carbon film by self-assembly using this organosol. The stability of the organosol is checked; after being aged for 10 months, the same monolayer of cubic Pt nanoparticles can be obtained using the organosol. The organosol, Pt nanoparticle self-assembled monolayer, and phase transfer were characterized by UV-vis spectra and transmission electron microscopy.

119 citations

Journal ArticleDOI
TL;DR: A one-step thermal process route to the synthesis of icosahedral gold nanocrystals, with unique geometrical shapes, that might find use in areas that include photonics, optoelectronics, and optical sensing are demonstrated.
Abstract: We demonstrate a one-step thermal process route to the synthesis of icosahedral gold nanocrystals. By regulating the concentrations of poly(vinyl pyrrolidone) (PVP) and HAuCl4 or changing the temperature, we can readily access the shapes of icosahedral nanocrystals with good uniformity. These gold nanostructures, with unique geometrical shapes, might find use in areas that include photonics, optoelectronics, and optical sensing. We also observed that these gold nanocrystals have a strong tendency to be immobilized spontaneously on the glass substrate.

79 citations

Journal ArticleDOI
TL;DR: In this article, a self-assembled 1-Dodecanethiol self-assembles on the surface for subsequent modification, and the mixed films before and after ac treatment are stable in a wide region of potentials.
Abstract: A new method for preparing effective inhibition film on copper has been developed. Phenylthiourea was first adsorbed to a copper surface to form a self-assembled film. 1-Dodecanethiol was then self-assembled on the surface for subsequent modification. Finally, ac voltage was loaded on copper covered with the mixed film to further modify the film. After these procedures, an effective inhibition film was obtained as indicated by the low corrosion current density in polarization curves. High charge-transfer resistance in electrochemical impedance spectra reveals that the film hinders corrosion electrochemical reaction between the copper surface and NaCl solution. Film coverage on the copper surface is more than 99.0%, and inhibition efficiency is more than 97.2% in 0.5 mol dm(-3) NaCl solutions. The mixed films before and after ac treatment are stable in a wide region of potentials. X-ray photoelectron spectroscopy analysis reveals that the effect of ac treatment may associate with the formation of a new complex compound. (C) 2003 The Electrochemical Society.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: In this paper, the surface plasmon response of metal nanoparticles is studied for different shapes and physical environments, and the modification of these surface plasmons by different surrounding media and the presence of a substrate or other nanoparticles are also discussed.
Abstract: The surface plasmon response of metal nanoparticles is studied for different shapes and physical environments. For polyhedral nanoparticles, the surface plasmon resonances are studied as a function of the number of faces and vertices. The modification of these surface plasmons by different surrounding media and the presence of a substrate or other nanoparticles is also discussed. We found that polyhedral nanoparticles composed with less faces show more surface plasmon resonances, and as the nanoparticle becomes more symmetric, the main surface plasmon resonance is blue-shifted. It is also found that the corners induce more surface plasmons in a wider energy range. In the presence of a substrate, multipolar plasmon resonances are induced, and as the nanoparticle approaches the substrate, such resonances are red-shifted. The interaction among nanoparticles also induces multipolar resonances, but they can be red or blue-shifted depending on the polarization of the external field.

1,574 citations

Journal ArticleDOI
TL;DR: This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS.
Abstract: Inorganic colloidal nanoparticles are very small, nanoscale objects with inorganic cores that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y(2)O(3)), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by appropriate functional molecules on the particle surface. This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS. However, the discussed strategies are often of general nature and apply in the same way to nanoparticles of other materials.

1,477 citations