scispace - formally typeset
Search or ask a question
Author

Shizuka Uchida

Bio: Shizuka Uchida is an academic researcher from University of Louisville. The author has contributed to research in topics: RNA & Medicine. The author has an hindex of 24, co-authored 81 publications receiving 3316 citations. Previous affiliations of Shizuka Uchida include Center for Cell and Gene Therapy & Aalborg University – Copenhagen.


Papers
More filters
Journal ArticleDOI
TL;DR: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.
Abstract: Rationale: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. Objective: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Methods and Results: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. Conclusions: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.

797 citations

Journal ArticleDOI
TL;DR: The data on lncRNA expressions in mouse and human is summarized and identified cardiovascular lncRNAs that might play a role in cardiovascular diseases are highlighted.
Abstract: In recent year, increasing evidence suggests that noncoding RNAs play important roles in the regulation of tissue homeostasis and pathophysiological conditions. Besides small noncoding RNAs (eg, microRNAs), >200-nucleotide long transcripts, namely long noncoding RNAs (lncRNAs), can interfere with gene expressions and signaling pathways at various stages. In the cardiovascular system, studies have detected and characterized the expression of lncRNAs under normal physiological condition and in disease states. Several lncRNAs are regulated during acute myocardial infarction (eg, Novlnc6) and heart failure (eg, Mhrt), whereas others control hypertrophy, mitochondrial function and apoptosis of cardiomyocytes. In the vascular system, the endothelial-expressed lncRNAs (eg, MALAT1 and Tie-1-AS) can regulate vessel growth and function, whereas the smooth-muscle-expressed lncRNA smooth muscle and endothelial cell-enriched migration/differentiation-associated long noncoding RNA was recently shown to control the contractile phenotype of smooth muscle cells. This review article summarizes the data on lncRNA expressions in mouse and human and highlights identified cardiovascular lncRNAs that might play a role in cardiovascular diseases. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights how lncRNAs interfere with cardiovascular diseases.

616 citations

Journal ArticleDOI
TL;DR: The data suggest that endothelial circRNAs are regulated by hypoxia and have biological functions, and the circRNA cZNF292 exhibits proangiogenic activities in vitro.
Abstract: Rationale:Circular RNAs (circRNAs) are noncoding RNAs generated by back splicing. Back splicing has been considered a rare event, but recent studies suggest that circRNAs are widely expressed. Howe...

302 citations

Journal ArticleDOI
TL;DR: Screening for lncRNAs that may act as miRNA sponges using the publicly available data sets and databases revealed the roles of miRNAs, and loss-of-function experiments were conducted, which revealed the biological roles as miRNSponges.
Abstract: Intensive research in past two decades has uncovered the presence and importance of noncoding RNAs (ncRNAs), which includes microRNAs (miRs) and long ncRNAs (lncRNAs). These two classes of ncRNAs interact to a certain extent, as some lncRNAs bind to miRs to sequester them. Such lncRNAs are collectively called 'competing endogenous RNAs' or 'miRNA sponges'. In this study, we screened for lncRNAs that may act as miRNA sponges using the publicly available data sets and databases. To uncover the roles of miRNA sponges, loss-of-function experiments were conducted, which revealed the biological roles as miRNA sponges. LINC00324 is important for the cell survival by binding to miR-615-5p leading to the de-repression of its target BTG2. LOC400043 controls several biological functions via sequestering miR-28-3p and miR-96-5p, thereby changing the expressions of transcriptional regulators. Finally, we also screened for circular RNAs (circRNAs) that may function as miRNA sponges. The results were negative at least for the selected circRNAs in this study. In conclusion, miRNA sponges can be identified by applying a series of bioinformatics techniques and validated with biological experiments.

266 citations

Journal ArticleDOI
TL;DR: It is shown that the cytokine receptor CCR2 is necessary for organ-specific homing of bone marrow-derived MASCs to the heart in a transgenic mouse model and into hearts damaged by ischemia/reperfusion.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is understood that lncRNAs drive many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein, and RNA, making these molecules attractive targets for therapeutic intervention in the fight against cancer.

2,336 citations

Journal ArticleDOI
25 Jan 2018-Cell
TL;DR: This review categorizes lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans and proposes an experimental approach to dissect lncRNAs activity based on these classifications.

2,241 citations

Journal ArticleDOI
TL;DR: A review of the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications is presented in this article.
Abstract: Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.

1,630 citations

01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations