scispace - formally typeset
Search or ask a question

Showing papers by "Shizuo Akira published in 2001"


Journal ArticleDOI
TL;DR: Evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.
Abstract: Recognition of pathogens is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors recognize conserved molecular patterns (pathogen-associated molecular patterns), which are shared by large groups of microorganisms. Toll-like receptors (TLRs) function as the PRRs in mammals and play an essential role in the recognition of microbial components. The TLRs may also recognize endogenous ligands induced during the inflammatory response. Similar cytoplasmic domains allow TLRs to use the same signaling molecules used by the interleukin 1 receptors (IL-1Rs): these include MyD88, IL-1R--associated protein kinase and tumor necrosis factor receptor--activated factor 6. However, evidence is accumulating that the signaling pathways associated with each TLR are not identical and may, therefore, result in different biological responses.

4,686 citations


Journal ArticleDOI
26 Apr 2001-Nature
TL;DR: It is reported that mammalian TLR5 recognizes bacterial flagellin from both Gram-positive and Gram-negative bacteria, and that activation of the receptor mobilizes the nuclear factor NF-κB and stimulates tumour necrosis factor-α production, and the data suggest thatTLR5, a member of the evolutionarily conserved Toll-like receptor family, has evolved to permit mammals specifically to detect flageLLated bacterial pathogens.
Abstract: The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, but not on the host. Toll-like receptors (TLRs) recognize PAMPs and mediate the production of cytokines necessary for the development of effective immunity. Flagellin, a principal component of bacterial flagella, is a virulence factor that is recognized by the innate immune system in organisms as diverse as flies, plants and mammals. Here we report that mammalian TLR5 recognizes bacterial flagellin from both Gram-positive and Gram-negative bacteria, and that activation of the receptor mobilizes the nuclear factor NF-kappaB and stimulates tumour necrosis factor-alpha production. TLR5-stimulating activity was purified from Listeria monocytogenes culture supernatants and identified as flagellin by tandem mass spectrometry. Expression of L. monocytogenes flagellin in non-flagellated Escherichia coli conferred on the bacterium the ability to activate TLR5, whereas deletion of the flagellin genes from Salmonella typhimurium abrogated TLR5-stimulating activity. All known TLRs signal through the adaptor protein MyD88. Mice challenged with bacterial flagellin rapidly produced systemic interleukin-6, whereas MyD88-null mice did not respond to flagellin. Our data suggest that TLR5, a member of the evolutionarily conserved Toll-like receptor family, has evolved to permit mammals specifically to detect flagellated bacterial pathogens.

3,575 citations


Journal ArticleDOI
TL;DR: It is shown that human TLR9 expression in human immune cells correlates with responsiveness to bacterial deoxycytidylate-phosphate-deoxyguanylate (CpG)-DNA, and data suggest that hTLR9 conveys CpG-DNA responsiveness to human cells by directly engaging immunostimulating Cpg-DNA.
Abstract: The Toll-like receptor (TLR) family consists of phylogenetically conserved transmembrane proteins, which function as mediators of innate immunity for recognition of pathogen-derived ligands and subsequent cell activation via the Toll/IL-1R signal pathway. Here, we show that human TLR9 (hTLR9) expression in human immune cells correlates with responsiveness to bacterial deoxycytidylate-phosphate-deoxyguanylate (CpG)-DNA. Notably “gain of function” to immunostimulatory CpG-DNA is achieved by expressing TLR9 in human nonresponder cells. Transfection of either human or murine TLR9 conferred responsiveness in a CD14- and MD2-independent manner, yet required species-specific CpG-DNA motifs for initiation of the Toll/IL-1R signal pathway via MyD88. The optimal CpG motif for hTLR9 was GTCGTT, whereas the optimal murine sequence was GACGTT. Overall, these data suggest that hTLR9 conveys CpG-DNA responsiveness to human cells by directly engaging immunostimulating CpG-DNA.

1,545 citations


Journal ArticleDOI
TL;DR: It is shown that MyD88-deficient mice have a profound defect in the activation of antigen-specific T helper type 1 (TH1) but not TH2 immune responses, suggesting that distinct pathways of the innate immune system control activation of the two effector arms of adaptive immunity.
Abstract: Mechanisms that control the activation of antigen-specific immune responses in vivo are poorly understood. It has been suggested that the initiation of adaptive immune responses is controlled by innate immune recognition. Mammalian Toll-like receptors play an essential role in innate immunity by recognizing conserved pathogen-associated molecular patterns and initiating the activation of NF-κB and other signaling pathways through the adapter protein, MyD88. Here we show that MyD88-deficient mice have a profound defect in the activation of antigen-specific T helper type 1 (TH1) but not TH2 immune responses. These results suggest that distinct pathways of the innate immune system control activation of the two effector arms of adaptive immunity.

1,416 citations


Journal ArticleDOI
TL;DR: Results show that TLR6 recognizes MALP-2 cooperatively with TLR2, and appears to discriminate between the N-terminal lipoylated structures of MALp-2 and lipopeptides derived from other bacteria.
Abstract: Bacterial lipoproteins (BLP) trigger immune responses via Toll-like receptor 2 (TLR2) and their immunostimulatory properties are attributed to the presence of a lipoylated N-terminus. Most BLP are triacylated at the N-terminus cysteine residue, but mycoplasmal macrophage-activating lipopeptide-2 kD (MALP-2) is only diacylated. Here we show that TLR6-deficient (TLR6 –/– ) cells are unresponsive to MALP-2 but retain their normal responses to lipopeptides of other bacterial origins. Reconstitution experiments in TLR2 –/– TLR6 –/– embryonic fibroblasts reveal that coexpression of TLR2 and TLR6 is absolutely required for MALP-2 responsiveness. Taken together, these results show that TLR6 recognizes MALP-2 cooperatively with TLR2, and appears to discriminate between the N-terminal lipoylated structures of MALP-2 and lipopeptides derived from other bacteria.

1,298 citations


Journal ArticleDOI
TL;DR: The characterization of the MyD88-independent pathway via TLR4 is reported, a MyD 88-dependent pathway that is critical to the induction of inflammatory cytokines and a Myd88/TNFR-associated factor 6- independent pathway that regulates induction of IP-10.
Abstract: Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.

1,107 citations


Journal ArticleDOI
23 Feb 2001-Science
TL;DR: It is shown that TLR2 activation leads to killing of intracellular Mycobacterium (M.) tuberculosis in both mouse and human macrophages, providing evidence that mammalian TLRs have retained not only the structural features of Drosophila Toll that allow them to respond to microbial ligands, but also the ability directly to activate antimicrobial effector pathways at the site of infection.
Abstract: The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

744 citations


Journal ArticleDOI
TL;DR: It is concluded that ER Ca2+ stores are a new target of NO, and the ER stress pathway is a major mechanism of NO-mediated β cell apoptosis.
Abstract: Excessive nitric oxide (NO) production in cytokine-activated β cells has been implicated in β cell disruption in type 1 diabetes. β cells are very vulnerable to NO-induced apoptosis. However, the mechanism underlying this phenomenon is unclear. Low concentrations of NO that lead to apoptosis apparently do not cause severe DNA damage in mouse MIN6 β cells. CHOP, a C/EBP homologous protein that is induced by endoplasmic reticulum (ER) stress and plays a role in growth arrest and cell death, was induced by a NO donor, S-nitroso-N-acetyl-d,l-penicillamine (SNAP). SNAP increased cytosolic Ca2+, and only agents depleting ER Ca2+ induced CHOP expression and led to apoptosis, suggesting that NO depletes ER Ca2+. Overexpression of calreticulin increased the Ca2+ content of ER and afforded protection to cells against NO-mediated apoptosis. Furthermore, pancreatic islets from CHOP knockout mice showed resistance to NO. We conclude that NO depletes ER Ca2+, causes ER stress, and leads to apoptosis. Thus, ER Ca2+ stores are a new target of NO, and the ER stress pathway is a major mechanism of NO-mediated β cell apoptosis.

603 citations


Journal ArticleDOI
TL;DR: Evidence is presented that Trypanosoma cruzi-derived GPI anchors and GIPLs trigger CD25 expression on Chinese hamster ovary-K1 cells transfected with CD14 and Toll-like receptor-2 (TLR-2), but not wild-type (TLr-2-deficient) Chinese hamsters ovary cells, which may initiate host innate defense mechanisms and inflammatory response during protozoan infection.
Abstract: Glycosylphosphatidylinositol (GPI) anchors and glycoinositolphospholipids (GIPLs) from parasitic protozoa have been shown to exert a wide variety of effects on cells of the host innate immune system. However, the receptor(s) that are triggered by these protozoan glycolipids has not been identified. Here we present evidence that Trypanosoma cruzi-derived GPI anchors and GIPLs trigger CD25 expression on Chinese hamster ovary-K1 cells transfected with CD14 and Toll-like receptor-2 (TLR-2), but not wild-type (TLR-2-deficient) Chinese hamster ovary cells. The protozoan-derived GPI anchors and GIPLs containing alkylacylglycerol and saturated fatty acid chains or ceramide were found to be active in a concentration range of 100 nM to 1 microM. More importantly, the GPI anchors purified from T. cruzi trypomastigotes, which contain a longer glycan core and unsaturated fatty acids in the sn-2 position of the alkylacylglycerolipid component, triggered TLR-2 at subnanomolar concentrations. We performed experiments with macrophages from TLR-2 knockout and TLR-4 knockout mice, and found that TLR-2 expression appears to be essential for induction of IL-12, TNF-alpha, and NO by GPI anchors derived from T. cruzi trypomastigotes. Thus, highly purified GPI anchors from T. cruzi parasites are potent activators of TLR-2 from both mouse and human origin. The activation of TLR-2 may initiate host innate defense mechanisms and inflammatory response during protozoan infection, and may provide new strategies for immune intervention during protozoan infections.

579 citations


Journal ArticleDOI
TL;DR: The present study provides the first evidence that the MyD88-independent pathway downstrem of TLR4 can lead to functional DC maturation, which is critical for a link between innate and adaptive immunity.
Abstract: LPS, a major component of the cell wall of Gram-negative bacteria, can induce a variety of biological responses including cytokine production from macrophages, B cell proliferation, and endotoxin shock. All of them were completely abolished in MyD88-deficient mice, indicating the essential role of MyD88 in LPS signaling. However, MyD88-deficient cells still show activation of NF-κB and mitogen-activated protein kinase cascades, although the biological significance of this activation is not clear. In this study, we have examined the effects of LPS on dendritic cells (DCs) from wild-type and several mutant mice. LPS-induced cytokine production from DCs was dependent on MyD88. However, LPS could induce functional maturation of MyD88-deficient DCs, including up-regulation of costimulatory molecules and enhancement of APC activity. MyD88-deficient DCs could not maturate in response to bacterial DNA, the ligand for Toll-like receptor (TLR)9, indicating that MyD88 is differentially required for TLR family signaling. MyD88-dependent and -independent pathways originate at the intracytoplasmic region of TLR4, because both cytokine induction and functional maturation were abolished in DCs from C3H/HeJ mice carrying the point mutation in the region. Finally, in vivo analysis revealed that MyD88-, but not TLR4-, deficient splenic CD11c+ DCs could up-regulate their costimulatory molecule expression in response to LPS. Collectively, the present study provides the first evidence that the MyD88-independent pathway downstrem of TLR4 can lead to functional DC maturation, which is critical for a link between innate and adaptive immunity.

534 citations


Journal ArticleDOI
TL;DR: Analysis of knockout mice revealed a pivotal role for MyD88 in the signaling of the TLR/IL-1R family, and together, TLRs and the downstream signaling pathway play a key role in innate immune recognition and in subsequent activation of adaptive immunity.

Journal ArticleDOI
TL;DR: Data suggest that hyperactivation of STAT3 results in severe colitis and that CIS3 plays a negative regulatory role in intestinal inflammation by downregulating STAT3 activity.
Abstract: Immune and inflammatory systems are controlled by multiple cytokines, including interleukins (ILs) and interferons. These cytokines exert their biological functions through Janus tyrosine kinases and signal transducer and activator of transcription (STAT) transcription factors. We recently identified two intrinsic Janus kinase (JAK) inhibitors, JAK binding protein (JAB; also referred to as suppressor of cytokine signaling [SOCS1]/STAT-induced STAT inhibitor [SSI1]) and cytokine-inducible SH2 protein (CIS)3 (or SOCS3/SSI3), which play an essential role in the negative regulation of cytokine signaling. We have investigated the role of STATs and these JAK inhibitors in intestinal inflammation. Among STAT family members, STAT3 was most strongly tyrosine phosphorylated in human ulcerative colitis and Crohn's disease patients as well as in dextran sulfate sodium (DSS)-induced colitis in mice. Development of colitis as well as STAT3 activation was significantly reduced in IL-6–deficient mice treated with DSS, suggesting that STAT3 plays an important role in the perpetuation of colitis. CIS3, but not JAB, was highly expressed in the colon of DSS-treated mice as well as several T cell–dependent colitis models. To define the physiological role of CIS3 induction in colitis, we developed a JAB mutant (F59D-JAB) that overcame the inhibitory effect of both JAB and CIS3 and created transgenic mice. DSS induced stronger STAT3 activation and more severe colitis in F59D-JAB transgenic mice than in their wild-type littermates. These data suggest that hyperactivation of STAT3 results in severe colitis and that CIS3 plays a negative regulatory role in intestinal inflammation by downregulating STAT3 activity.

Journal ArticleDOI
TL;DR: It is suggested that for expression of a full repertoire of LPS-/Taxol-inducible genes, CD14, TLR4, and CD11b/CD18 must be coordinately engaged to deliver optimal signaling to the macrophage.
Abstract: Overproduction of inflammatory mediators by macrophages in response to Gram-negative LPS has been implicated in septic shock. Recent reports indicate that three membrane-associated proteins, CD14, CD11b/CD18, and Toll-like receptor (TLR) 4, may serve as LPS recognition and/or signaling receptors in murine macrophages. Therefore, the relative contribution of these proteins in the induction of cyclooxygenase 2 (COX-2), IL-12 p35, IL-12 p40, TNF-alpha, IFN-inducible protein (IP)-10, and IFN consensus sequence binding protein (ICSBP) genes in response to LPS or the LPS-mimetic, Taxol, was examined using macrophages derived from mice deficient for these membrane-associated proteins. The panel of genes selected reflects diverse macrophage effector functions that contribute to the pathogenesis of septic shock. Induction of the entire panel of genes in response to low concentrations of LPS or Taxol requires the participation of both CD14 and TLR4, whereas high concentrations of LPS or Taxol elicit the expression of a subset of LPS-inducible genes in the absence of CD14. In contrast, for optimal induction of COX-2, IL-12 p35, and IL-12 p40 genes by low concentrations of LPS or by all concentrations of Taxol, CD11b/CD18 was also required. Mitigated induction of COX-2, IL-12 p35, and IL-12 p40 gene expression by CD11b/CD18-deficient macrophages correlated with a marked inhibition of NF-kappa B nuclear translocation and mitogen-activated protein kinase (MAPK) activation in response to Taxol and of NF-kappa B nuclear translocation in response to LPS. These findings suggest that for expression of a full repertoire of LPS-/Taxol-inducible genes, CD14, TLR4, and CD11b/CD18 must be coordinately engaged to deliver optimal signaling to the macrophage.

Journal ArticleDOI
TL;DR: Based on recent findings in myeloid differentiation factor 88 (MyD88)- and Toll-like receptor (TLR)-knockout mice, Tsuneyasu Kaisho and Shizuo Akira discuss the roles of TLRs and MyD88 in dendritic cell (DC) maturation and cytokine production.

Book ChapterDOI
Shizuo Akira1
TL;DR: This review focuses on the functions of PRRs in innate immunity and their downstream signaling cascades and identifies cytoplasmic PRRs to detect pathogens that have invaded cytosols.
Abstract: The innate immune system is an evolutionally conserved host defense mechanism against pathogens. Innate immune responses are initiated by pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Among them, Toll-like receptors (TLRs) are capable of sensing organisms ranging from bacteria to fungi, protozoa, and viruses, and play a major role in innate immunity. However, TLRs recognize pathogens either on the cell surface or in the lysosome/endosome compartment. Recently, cytoplasmic PRRs have been identified to detect pathogens that have invaded cytosols. In this review, we focus on the functions of PRRs in innate immunity and their downstream signaling cascades.

Journal ArticleDOI
TL;DR: Results suggest that Taxol and LPS not only share a TLR4/MyD88‐dependent pathway in generating inflammatory mediators, but also share aTLR4‐dependent/Myd88‐independent pathway leading to activation of MAPK and NF‐κB.
Abstract: Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.

Journal ArticleDOI
TL;DR: A family of Toll‐like receptors (TLRs) was identified, and crucial roles for these receptors in the recognition of microbial components have been elucidated, and these receptors control both innate and adaptive immune responses.
Abstract: Innate immunity recognizes invading micro-organisms and triggers a host defence response. However, the molecular mechanism for innate immune recognition was unclear. Recently, a family of Toll-like receptors (TLRs) was identified, and crucial roles for these receptors in the recognition of microbial components have been elucidated. The TLR family consists of 10 members and will be expanding. Each TLR distinguishes between specific patterns of microbial components to provoke innate immune responses. The activation of innate immunity then leads to the development of antigen-specific adaptive immunity. Thus, TLRs control both innate and adaptive immune responses.

Journal ArticleDOI
TL;DR: Results indicate that MyD88 is essential for IL-12 and IL-1β production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD 88-independent fashion after stimulation with LPS.
Abstract: IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.

Journal ArticleDOI
TL;DR: The results indicate that the liver injury induced by P. berghei infection of mice inducesactivation of the TLR-MyD88 signaling pathway which results in IL-12 production and activation of the perforin-dependent cytotoxic activities of MHC-unrestricted hepatic lymphocytes.
Abstract: Malaria, caused by infection with Plasmodium spp., is a life cycle-specific disease that includes liver injury at the erythrocyte stage of the parasite. In this study, we have investigated the mechanisms underlying Plasmodium berghei-induced liver injury, which is characterized by the presence of apoptotic and necrotic hepatocytes and dense infiltration of lymphocytes. Although both IL-12 and IL-18 serum levels were elevated after infection, IL-12-deficient, but not IL-18-deficient, mice were resistant to liver injury induced by P. berghei. Neither elevation of serum IL-12 levels nor liver injury was observed in mice deficient in myeloid differentiation factor 88 (MyD88), an adaptor molecule shared by Toll-like receptors (TLRs). These results demonstrated a requirement of the TLR-MyD88 pathway for induction of IL-12 production during P. berghei infection. Hepatic lymphocytes from P. berghei-infected wild-type mice lysed hepatocytes from both uninfected and infected mice. The hepatocytotoxic action of these cells was blocked by a perforin inhibitor but not by a neutralizing anti-Fas ligand Ab and was up-regulated by IL-12. Surprisingly, these cells killed hepatocytes in an MHC-unrestricted manner. However, CD1d-deficient mice that lack CD1d-restricted NK T cells, were susceptible to liver injury induced by P. berghei. Collectively, our results indicate that the liver injury induced by P. berghei infection of mice induces activation of the TLR-MyD88 signaling pathway which results in IL-12 production and activation of the perforin-dependent cytotoxic activities of MHC-unrestricted hepatic lymphocytes.

Journal ArticleDOI
TL;DR: It is suggested that LTA as well as LPS activated human monocytic cells in a CD14- and TLR4-dependent manner and exhibited synergistic and priming effects on the cells for cytokine production in response to various bacterial components.
Abstract: An analog of 1α,25-dihydroxyvitamin D3, 22-oxyacalcitriol (OCT), differentiated human monocytic THP-1 and U937 cells to express membrane CD14 and rendered the cells responsive to bacterial cell surface components. Both THP-1 and U937 cells expressed Toll-like receptor 4 (TLR4) on the cell surface and TLR4 mRNA in the cells, irrespective of OCT treatment. In contrast, OCT-treated U937 cells scarcely expressed TLR2 mRNA, while OCT-treated THP-1 cells expressed this transcript. Muramyldipeptide (MDP) by itself exhibited only a weak ability to induce secretion of inflammatory cytokines such as interleukin-8 (IL-8) in the OCT-differentiated THP-1 cells but showed marked synergistic effects with Salmonella lipopolysaccharide (LPS) or lipoteichoic acid (LTA) from Staphylococcus aureus, both of which exhibited strong activities. Combinatory stimulation with LPS plus LTA did not show a synergistic effect on OCT-differentiated THP-1 cells. Similar results were observed in OCT-differentiated U937 cells, although combination experiments were carried out only with MDP plus LPS. Anti-CD14 monoclonal antibody (MAb) MY4, anti-TLR4 MAb HTA125, and the synthetic lipid A precursor LA-14-PP almost completely inhibited the IL-8-inducing activities of LTA as well as LPS on OCT-treated THP-1 cells, but these treatments increased MDP activity. OCT-treated THP-1 cells primed with MDP exhibited enhanced production of IL-8 upon stimulation with LPS, while the cells primed with LPS showed no change in production upon stimulation with MDP. MDP up-regulated mRNA expression of an adapter molecule to TLRs, MyD88, to an extent similar to that for LPS in OCT-treated THP-1 cells. These findings suggested that LTA as well as LPS activated human monocytic cells in a CD14- and TLR4-dependent manner, whereas MDP exhibited activity in a CD14-, TLR4-, and probably TLR2-independent manner and exhibited synergistic and priming effects on the cells for cytokine production in response to various bacterial components.

Journal ArticleDOI
TL;DR: It is demonstrated that both NIK and IKKα are essential for the induction of NF-κB through LTβR, whereas the NIK–IKKα pathway is dispensable in TNFR-I signaling.
Abstract: Both nuclear factor (NF)-κB–inducing kinase (NIK) and inhibitor of κB (IκB) kinase (IKK) have been implicated as essential components for NF-κB activation in response to many external stimuli. However, the exact roles of NIK and IKKα in cytokine signaling still remain controversial. With the use of in vivo mouse models, rather than with enforced gene-expression systems, we have investigated the role of NIK and IKKα in signaling through the type I tumor necrosis factor (TNF) receptor (TNFR-I) and the lymphotoxin β receptor (LTβR), a receptor essential for lymphoid organogenesis. TNF stimulation induced similar levels of phosphorylation and degradation of IκBα in embryonic fibroblasts from either wild-type or NIK-mutant mice. In contrast, LTβR stimulation induced NF-κB activation in wild-type mice, but the response was impaired in embryonic fibroblasts from NIK-mutant and IKKα-deficient mice. Consistent with the essential role of IKKα in LTβR signaling, we found that development of Peyer's patches was defective in IKKα-deficient mice. These results demonstrate that both NIK and IKKα are essential for the induction of NF-κB through LTβR, whereas the NIK–IKKα pathway is dispensable in TNFR-I signaling.

Journal ArticleDOI
TL;DR: Results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells and transgene expression of bcl-2 could only partially rescue impaired B cell development in IKK α−/− chimeras.
Abstract: IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.

Journal ArticleDOI
TL;DR: The data underscore the pivotal role of macrophages, and the macrophage-derived IL-18, in the establishment of TNBS-induced colitis in mice and highlight the potential use of therapy directed againstIL-18 in the treatment of patients with CD.

Journal ArticleDOI
TL;DR: It is shown that SSI-1 participates and plays an important role in the insulin signal transduction pathway by binding directly to IRS-1 and by suppressing Janus kinases.
Abstract: Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin receptor substrate 1 (IRS-1), SSI-1 deficiency resulted in sustained phosphorylation of IRS-1 in response to insulin. Furthermore, SSI-1 achieves this inhibition both by binding directly to IRS-1 and by suppressing Janus kinases. These findings suggest that SSI-1 acts as a negative feedback factor also in the insulin signal transduction pathway through the suppression of IRS-1 phosphorylation.

Journal ArticleDOI
TL;DR: It is suggested that CD14 and TLR2 andTLR6 function as coreceptors for secreted microbial products derived from GBS and that cell wall components of GBS are recognized by TLRs distinct from TLR1, 2, 4, or 6.
Abstract: Group B streptococcus (GBS) imposes a major health threat to newborn infants. Little is known about the molecular basis of GBS-induced sepsis. Both heat-inactivated whole GBS bacteria and a heat-labile soluble factor released by GBS during growth (GBS-F) induce nuclear translocation of NF-kappaB, the secretion of TNF-alpha, and the formation of NO in mouse macrophages. Macrophages from mice with a targeted disruption of MyD88 failed to secrete TNF-alpha in response to both heat-inactivated whole bacteria and GBS-F, suggesting that Toll-like receptors (TLRs) are involved in different aspects of GBS recognition. Immune cell activation by whole bacteria differed profoundly from that by secreted GBS-F. Whole GBS activated macrophages independently of TLR2 and TLR6, whereas a response to the secreted GBS-F was not observed in macrophages from TLR2-deficient animals. In addition to TLR2, TLR6 and CD14 expression were essential for GBS-F responses, whereas TLR1 and TLR4 or MD-2 did not appear to be involved. Heat lability distinguished GBS-F from peptidoglycan and lipoproteins. GBS mutants deficient in capsular polysaccharide or beta-hemolysin had GBS-F activity comparable to that of wild-type streptococci. We suggest that CD14 and TLR2 and TLR6 function as coreceptors for secreted microbial products derived from GBS and that cell wall components of GBS are recognized by TLRs distinct from TLR1, 2, 4, or 6.

Journal ArticleDOI
TL;DR: Recent progress is described in elucidating the function and signaling mechanisms of the TLR family, a group of transmembrane proteins that plays crucial roles in the host defense against invading pathogens.
Abstract: In Drosophila the Toll family, a group of transmembrane proteins, plays crucial roles in the host defense against invading pathogens. Mammalian species also conserve this system as the Toll-like receptor (TLR) family, which includes more than 10 members that have been identified so far. Both the Toll and TLR families recognize various kinds of microorganisms through pathogen-associated molecular patterns. Mammalian TLRs are expressed on macrophages and dendritic cells and mediate the signal for cytokine release or upregulation of costimulatory molecules. These activities cooperatively generate host defense mechanisms. Recently, gene targeting experiments, including ours, have contributed much to clarifying not only the function but also the signaling mechanism of TLRs. TLR2 is essential for recognizing lipopeptides and lipoproteins from several microorganisms and also peptidoglycans derived from gram-positive bacteria. TLR4 recognizes lipopolysaccharides and lipoteichoic acids from gram-negative and - pos...

Journal ArticleDOI
TL;DR: It is shown thatmRor1-deficient mice have no apparent skeletal or cardiac abnormalities, yet they also die soon after birth due to respiratory dysfunction, indicating that mROr1 and mRor2 interact genetically in skeletal and cardiac development.
Abstract: Receptor tyrosine kinases (RTKs) play several crucial roles in developmental morphogenesis, regulating cellular proliferation, differentiation, and migration, as well as survival and death (26, 30). The Ror family RTKs are a recently identified family of orphan RTKs, characterized by the presence of extracellular Frizzled-like cysteine-rich domains and membrane-proximal Kringle domains, both of which are assumed to mediate protein-protein interactions (15, 20, 24, 25, 29). The Ror family RTKs are evolutionarily conserved among Caenorhabditis elegans, Drosophila, mice, and humans (7, 14, 19, 20, 34). Pairs of structurally similar Ror family RTKs are found in Drosophila and mammals: Dror and Dnrk in Drosophila melanogaster, Ror1 and Ror2 in humans, and mRor1 and mRor2 in mice. Although it has been reported that CAM-1, a C. elegans ortholog of the Ror family RTKs, plays several important roles in regulating cellular migration, polarity of asymmetric cell divisions, and axonal outgrowth of neurons during nematode development (7), the functional and developmental roles of the mammalian Ror family RTKs remain largely elusive. The spatial and temporal expression of mRor1 and mRor2 mostly overlap and are detected in the face, limbs, heart, and lungs during mouse embryogenesis (16). These expression patterns suggest that mRor1 and mRor2 may interact to play a role in the development of these organs. It has been shown that mice lacking mRor2 expression exhibit dwarfism, short limbs (with mesomelic dysplasia) and tail, facial anomalies, ventricular septal defect (VSD), and respiratory dysfunction, ultimately leading to neonatal lethality (5, 32). Histological analyses of the skeletal systems reveal that mRor2 plays a crucial role in the proliferation, differentiation, maturation, and motility of chondrocytes (5, 32). Interestingly, it has recently been reported that mutations within Ror2 can cause the autosomal recessive Robinow syndrome or autosomal dominant brachydactyly type B in humans (1, 21, 31, 33), further emphasizing essential roles of Ror2 in morphogenetic and developmental processes. However, little is known about the function of mRor1 during mouse development. In order to elucidate the functional and developmental roles of mRor1, we generated mice lacking a functional mRor1 gene by targeted gene disruption. mRor1−/− mice died within 24 h after birth, presumably due to respiratory dysfunction. However, unlike the mRor2−/− mice, they did not exhibit any obvious morphological abnormalities of the skeleton or heart. Given that the spatiotemporal expression patterns of mRor1 and mRor2 mostly overlap during development (16), we investigated whether the loss of mRor1 function can be compensated for by mRor2 in mRor1−/− mice. To determine whether mRor1 interacts genetically with mRor2 during mouse development, we generated mRor1/mRor2 double mutants. Interestingly, the double mutants exhibited defects in the skeletal and cardiac systems similar to but more severe than those observed in the single mRor2 mutants. Furthermore, the double mutant mice exhibited several defects not found in either the mRor1 or mRor2 single mutants, namely, defects in the sternum, dysplasia of the symphysis of the public bone, and complete transposition of the great arteries. Analyses of these mutant mice indicate that mRor1 and mRor2 are functionally redundant and that mRor1 and mRor2 interact genetically in skeletal and cardiac development.

Journal ArticleDOI
TL;DR: Results suggested that targeted disruption of Cyp19 caused anovulation and precocious depletion of ovarian follicles, although it did not restore the defect in ovulation, and analysis of mice supplemented with E(2) demonstrated that E( 2) apparently supports development of ovarian granulocytes, although the defect did not recover.
Abstract: Aromatase P450 (CYP19) is an enzyme catalysing the conversion of androgens into oestrogens. We generated mice lacking aromatase activity (ArKO) by targeted disruption of Cyp19 and report the characteristic features of the ArKO ovaries and uteri as revealed by histological and biochemical analyses. ArKO females were totally infertile but there were as many developing follicles in their ovaries at 8 weeks of age as in wild-type ovaries. Nevertheless, no typical corpus luteum was observed in the ArKO ovaries. Electron microscopy revealed the presence of well-developed smooth endoplasmic reticulum, few lipid droplets and mitochondria with less organized tubular structures in the ArKO luteinized interstitial cells. These ultrastructural features were different from those of the wild-type interstitial cells, where there are many lipid droplets and mitochondria with well-developed tubular structures, characteristic of steroid-producing cells. When ArKO mice were supplemented with 17beta-oestradiol (E(2); 15 microg/mouse) every fourth day from 4 weeks of age for 1 month, increased numbers of follicles were observed in the ovaries as compared with those of untreated ArKO mice, although no typical corpus luteum was detectable. Ultrastructural analysis revealed the disappearance of the accumulated smooth endoplasmic reticulum in the luteinized interstitial cells after E(2 )supplementation. Transcripts of pro-apoptotic genes such as p53 and Bax genes were markedly elevated in the ArKO ovaries as compared with those of wild-type mice. Although E(2) supplementation did not cause suppression of the elevated expression of p53 and Bax mRNAs, it caused marked enhancement of expression levels of lactoferrin and progesterone receptor mRNAs in the uteri as well as increases in uterine wet weight. At 8 months of age, ArKO mice developed haemorrhages in the ovaries, in which follicles were nearly depleted, while age-matched wild-type females still had many ovarian follicles. Furthermore, macrophage-like cells were occasionally observed in the ArKO ovarian follicles. These results suggested that targeted disruption of Cyp19 caused anovulation and precocious depletion of ovarian follicles. Additionally, analysis of mice supplemented with E(2) demonstrated that E(2) apparently supports development of ovarian follicles, although it did not restore the defect in ovulation.

Journal ArticleDOI
TL;DR: Structural motifs sustaining the functions of M161Ag are identified using wild-type and unlipidated rM161Ag with (SP+) or without signal peptides (SP−), infer that the N-terminal hydrophobic structure of M160Ag is important for TLR2-mediated cell activation and complement activation.
Abstract: M161Ag is a 43-kDa surface lipoprotein of Mycoplasma fermentans, serving as a potent cytokine inducer for monocytes/macrophages, maturing dendritic cells (DCs), and activating host complement on affected cells. It possesses a unique N-terminal lipo-amino acid, S:-diacylglyceryl cysteine. The 2-kDa macrophage-activating lipopeptide-2 (MALP-2), recently identified as a ligand for Toll-like receptor 2 (TLR2), is derived from M161Ag. In this study, we identified structural motifs sustaining the functions of M161Ag using wild-type and unlipidated rM161Ag with (SP(+)) or without signal peptides (SP(-)). Because the SP(+) rM161Ag formed dimers via 25Cys, we obtained a monomeric form by mutagenesis (SP(+)C25S). Only wild type accelerated maturation of human DCs as determined by the CD83/86 criteria, suggesting the importance of the N-terminal fatty acids for this function. Wild-type and the SP(+) form of monomer induced secretion of TNF-alpha and IL-12 p40 by human monocytes and DCs. Either lipid or signal peptide at the N-terminal portion of monomer was required for expression of this function. In contrast, murine macrophages produced TNF-alpha in response to wild type, but not to any recombinant form of M161Ag, suggesting the species-dependent response to rM161Ag. Wild-type and both monomeric and dimeric SP(+) forms possessed the ability to activate complement via the alternative pathway. Again, the hydrophobic portion was associated with this function. These results, together with the finding that macrophages from TLR2-deficient mice did not produce TNF-alpha in response to M161Ag, infer that the N-terminal hydrophobic structure of M161Ag is important for TLR2-mediated cell activation and complement activation.

Journal ArticleDOI
TL;DR: The results presented establish sCD14 as a naturally occurring soluble B cell mitogen of mammalian origin and its administration to neonatal mice enhances Ig secretion.
Abstract: Induction of resting B cell growth and differentiation requires a complex series of temporally coordinated signals that are initiated on contact with activated helper T cells. These signals complement one another, each rendering the B cell susceptible to factors supporting progressive activation. Here, we demonstrate that soluble CD14 (sCD14) bypasses the physiological sequelae of events that limit B cell activation. B cell growth and differentiation in vitro is induced by both native and recombinant forms of sCD14 at nanomolar concentrations. sCD14-mediated cellular activation does not require membrane CD14 expression, depends on a region of CD14 that is not involved in lipopolysaccharide binding, and requires functional Toll-like receptor 4. Consistent with biological activity of sCD14 in vitro, its administration to neonatal mice enhances Ig secretion. The results presented establish sCD14 as a naturally occurring soluble B cell mitogen of mammalian origin.