scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
25 May 2009-PLOS ONE
TL;DR: TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling, given its essential role in signaling by various receptors involved in the acquired immune system.
Abstract: BACKGROUND In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor kappaB (NF-kappaB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-kappaB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed. PRINCIPAL FINDINGS Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-kappaB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFbeta-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-kappaB activation, were not essential for RLH-mediated NF-kappaB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-kappaB and IRF7. CONCLUSIONS/SIGNIFICANCE Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.

104 citations

Journal ArticleDOI
TL;DR: A key role for TANK is demonstrated in enabling the canonical IKKs and the IKK-related kinases to regulate each other, which is required to limit the strength of TLR signaling and ultimately, prevent autoimmunity.
Abstract: Toll-like receptor (TLR) ligands that signal via TIR-domain-containing adapter-inducing IFNβ (TRIF) activate the IκB kinase (IKK)-related kinases, TRAF associated NFκB activator (TANK)-binding kinase-1 (TBK1) and IKKe, which then phosphorylate IRF3 and induce the production of IFNβ. Here we show that TBK1 and IKKe are also activated by TLR ligands that signal via MyD88. Notably, the activation of IKKe is rapid, transient, and it precedes a more prolonged activation of TBK1. The MyD88- and TRIF-dependent signaling pathways activate the IKK-related kinases by two signaling pathways. One is mediated by the canonical IKKs, whereas the other culminates in the autoactivation of the IKK-related kinases. Once activated, TBK1/IKKe then phosphorylate and inhibit the canonical IKKs. The negative regulation of the canonical IKKs by the IKK-related kinases occurs in both the TRIF- and MyD88-dependent TLR pathways, whereas IRF3 phosphorylation is restricted to the TRIF-dependent signaling pathway. We have discovered that the activation of IKKe is abolished, the activation of TBK1 is reduced, and the interaction between the IKK-related kinases and the canonical IKKs is suppressed in TANK−/− macrophages, preventing the IKK-related kinases from negatively regulating the canonical IKKs. In contrast, IRF3 phosphorylation and IFNβ production was normal in TANK−/− macrophages. Our results demonstrate a key role for TANK in enabling the canonical IKKs and the IKK-related kinases to regulate each other, which is required to limit the strength of TLR signaling and ultimately, prevent autoimmunity.

104 citations

Journal ArticleDOI
TL;DR: It is demonstrated that deleting either TRAM or TRIF in immune cells is sufficient to attenuate vessel inflammation and protect against atherosclerosis, and TLR3 is identified as a pro-atherogenic receptor in haematopoietic immune cells.
Abstract: Aims Members of the Toll-like receptor (TLR) family initiate innate immune responses and were recently shown to play a role in atherosclerosis. However, the mechanisms that link TLR ligation to vascular inflammation and atherogenesis remain unclear. To identify which signalling pathways downstream of TLRs in immune cells are pro-atherogenic, we analysed the role of the TLR-specific adaptors MyD88 adaptor-like (MAL), TRIF-related adaptor molecule (TRAM), and TIR-domain-containing adaptor-inducing interferon-β (TRIF) in atherosclerosis. Methods and results Using a bone-marrow transplantation strategy into low-density lipoprotein receptor-deficient ( Ldlr−/− ) mice, we could specifically study the absence of the TLR adaptors in immune cells. We showed that haematopoietic deficiency of TRAM and TRIF, but not MAL, reduces atherosclerosis without affecting cholesterol metabolism. This was mediated by decreased aortic inflammation, indicated by lower aortic levels of pro-inflammatory mediators, and reduced influx of macrophages and T cells. Furthermore, by studying Tlr3−/− chimeric Ldlr−/− mice, we found that deleting TLR3 in immune cells significantly reduced both aortic inflammation and atherosclerotic burden. Conclusions By studying hypercholesterolaemic mice with defects in TLR-signalling adaptors, we demonstrated that deleting either TRAM or TRIF in immune cells is sufficient to attenuate vessel inflammation and protect against atherosclerosis. In addition, these adaptors elicit partly different sets of inflammatory mediators and can independently inhibit the disease process. Furthermore, we identify TLR3 as a pro-atherogenic receptor in haematopoietic immune cells. The identification of these pro-atherogenic pathways downstream of TLR3 and TLR4 contributes to a better understanding of TLRs and their signalling pathways in the pathogenesis of atherosclerosis.

104 citations

Journal ArticleDOI
TL;DR: It is demonstrated that cryptococcal DNA causes activation of BM-DCs in a TLR9-dependent manner and suggested that the CpG motif-containing DNA may contribute to the development of inflammatory responses after infection with C. neoformans.
Abstract: The mechanism of host cell recognition of Cryptococcus neoformans , an opportunistic fungal pathogen in immunocompromised patients, remains poorly understood. In the present study, we asked whether the DNA of this yeast activates mouse bone marrow-derived myeloid dendritic cells (BM-DCs). BM-DCs released IL-12p40 and expressed CD40 upon stimulation with cryptococcal DNA, and the response was abolished by treatment with DNase, but not with RNase. IL-12p40 production and CD40 expression were attenuated by chloroquine, bafilomycin A, and inhibitory oligodeoxynucleotides (ODN) that suppressed the responses caused by CpG-ODN. Activation of BM-DCs by cryptococcal DNA was almost completely abrogated in TLR9 gene-disrupted (TLR9 −/− ) mice and MyD88 −/− mice, similar to that by CpG-ODN. In addition, upon stimulation with whole yeast cells of acapsular C. neoformans , TLR9 −/− BM-DCs produced a lower amount of IL-12p40 than those from wild-type mice, and TLR9 −/− mice were more susceptible to pulmonary infection with this fungal pathogen than wild-type mice, as shown by increased number of live colonies in lungs. Treatment of cryptococcal DNA with methylase resulted in reduced IL-12p40 synthesis by BM-DCs. Furthermore, using a luciferase reporter assay, cryptococcal DNA activated NF-κB in HEK293 cells transfected with the TLR9 gene. Finally, confocal microscopy showed colocalization of fluorescence-labeled cryptococcal DNA with CpG-ODN and the findings merged in part with the distribution of TLR9 in BM-DCs. Our results demonstrate that cryptococcal DNA causes activation of BM-DCs in a TLR9-dependent manner and suggest that the CpG motif-containing DNA may contribute to the development of inflammatory responses after infection with C. neoformans .

104 citations

Journal ArticleDOI
TL;DR: hLF induces moderate activation of TLR4‐mediated innate immunity through its carbohydrate chains; however, hLF suppresses endotoxemia by interfering with lipopolysaccharide‐dependentTLR4 activation, probably through its polypeptide moiety.
Abstract: Lactoferrin (LF) has been implicated in innate immunity. Here we reveal the signal transduction pathway responsible for human LF (hLF)-triggered nuclear factor-kappaB (NF-kappaB) activation. Endotoxin-depleted hLF induces NF-kappaB activation at physiologically relevant concentrations in the human monocytic leukemia cell line, THP-1, and in mouse embryonic fibroblasts (MEFs). In MEFs, in which both tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 are deficient, hLF causes NF-kappaB activation at a level comparable to that seen in wild-type MEFs, whereas TRAF6-deficient MEFs show significantly impaired NF-kappaB activation in response to hLF. TRAF6 is known to be indispensable in leading to NF-kappaB activation in myeloid differentiating factor 88 (MyD88)-dependent signaling pathways, while the role of TRAF6 in the MyD88-independent signaling pathway has not been clarified extensively. When we examined the hLF-dependent NF-kappaB activation in MyD88-deficient MEFs, delayed, but remarkable, NF-kappaB activation occurred as a result of the treatment of cells with hLF, indicating that both MyD88-dependent and MyD88-independent pathways are involved. Indeed, hLF fails to activate NF-kappaB in MEFs lacking Toll-like receptor 4 (TLR4), a unique TLR group member that triggers both MyD88-depependent and MyD88-independent signalings. Importantly, the carbohydrate chains from hLF are shown to be responsible for TLR4 activation. Furthermore, we show that lipopolysaccharide-induced cytokine and chemokine production is attenuated by intact hLF but not by the carbohydrate chains from hLF. Thus, we present a novel model concerning the biological function of hLF: hLF induces moderate activation of TLR4-mediated innate immunity through its carbohydrate chains; however, hLF suppresses endotoxemia by interfering with lipopolysaccharide-dependent TLR4 activation, probably through its polypeptide moiety.

103 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations