scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: The influence of chemically and physically diverse biomaterials on DCs is analysed using several murine knockouts to study the molecular mechanisms of TLR signalling and DC activation aiming at fine-tuning desired and pre-determined immune responses.

71 citations

Journal ArticleDOI
TL;DR: Results suggest that TRIF mediates a distinct cytokine/chemokine profile in response to P. aeruginosa infection, and represents a novel mechanism involved in the development of host response to the virus.
Abstract: Toll-IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) is an adaptor molecule that mediates a distinct TLR signaling pathway. Roles of TRIF in the host defense have been primarily associated with virus infections owing to the induction of IFN-alphabeta. In this study, we investigated a role of TRIF in Pseudomonas aeruginosa infection. In vitro, TRIF-deficient mouse alveolar and peritoneal macrophages showed a complete inhibition of RANTES (CCL5) production, severely impaired TNF and KC (CXCL1) production, and reduced NF-kappaB activation in response to P. aeruginosa stimulation. In vivo, TRIF-deficient mice showed a complete inhibition of RANTES production, a severely impaired TNF and KC production, and an efficient MIP-2 and IL-1beta production in the lung following P. aeruginosa infection. This outcome was associated with a delayed recruitment of neutrophils into the airways. These results suggest that TRIF mediates a distinct cytokine/chemokine profile in response to P. aeruginosa infection. P. aeruginosa-induced RANTES production is completely dependent on TRIF pathway in mice. Importantly, TRIF deficiency leads to impaired clearance of P. aeruginosa from the lung during the initial 24-48 h of infection. Thus, TRIF represents a novel mechanism involved in the development of host response to P. aeruginosa infection.

70 citations

Journal ArticleDOI
TL;DR: The manipulation or intervention of TLR-mediated immune responses is a possible multiple 'Toll' gate for future developments of immunotherapies.
Abstract: Toll-like receptors (TLRs) are evolutionary conserved transmembrane proteins that recognize a unique pattern of molecules derived from pathogens or damaged cells, triggering robust but defined innate immune responses. TLR-mediated innate and/or adaptive immune responses play an important role in a variety of diseases including infectious diseases, sepsis, autoimmune diseases, allergy, and atherosclerosis. Each TLR displays a differential expression pattern, intracellular localization and signaling pathway, resulting in distinct immune responses. A variety of new TLR ligands including agonists (e.g. urinary Tamm-Horsfall glycoprotein as a TLR4 ligand, siRNA as TLR3 or 7 ligand, Plasmodium falciparum Hemozoin as a TLR9 ligand, Profilin-like protein in Toxoplasma gondii as a TLR11 ligand) and antagonists (G-rich oligodeoxynucleotides as antagonist for TLR9) have been identified, and some of other TLR ligands are already under clinical trials. The manipulation or intervention of TLR-mediated immune responses is a possible multiple 'Toll' gate for future developments of immunotherapies.

70 citations

Journal ArticleDOI
TL;DR: In vivo studies strongly suggest that the TLR2–MyD88-dependent pathway in keratinocytes is essential for antimicrobial activity in vivo.

69 citations

Journal ArticleDOI
TL;DR: This study demonstrates that TAK1 is a central target for short-term inhibition of key signaling pathways and neuroprotection in cerebral ischemia and upregulated another MAP3K, apoptosis signal-regulating kinase-1, which is able to compensate for TAK 1 inhibition.
Abstract: Neuronal apoptosis contributes to ischemic brain damage and neurodegenerative disorders. Key regulators of neuronal apoptosis are the transcription factor NF-κB and the MAP kinases p38/MAPK and JNK, which share a common upstream activator, the mitogen-activated protein kinase kinase kinase (MAP3K) TGFβ-activated kinase 1 (TAK1). Here we investigate the function of TAK1 in ischemia-induced neuronal apoptosis. In primary cortical neurons, TAK1 was activated by oxygen glucose deprivation (OGD), an in vitro model of cerebral ischemia. We found that short-term inhibition of TAK1 protected against OGD in vitro and reduced the infarct volume after middle cerebral artery occlusion in vivo. Prolonged inhibition or deletion of the TAK1 gene in neurons was, however, not protective. Short-term, but not prolonged inhibition of TAK1 interfered with the activation of p38/MAPK and JNK by OGD, the induction of the pro-oxidative genes Cox-2, Nox-2, and p40phox, and the formation of superoxide. We found that prolonged TAK1 inhibition upregulated another MAP3K, apoptosis signal-regulating kinase-1, which is able to compensate for TAK1 inhibition. Our study demonstrates that TAK1 is a central target for short-term inhibition of key signaling pathways and neuroprotection in cerebral ischemia.

69 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations