scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is definitively demonstrated that zinc-finger antiviral protein (ZAP) acts as a cytosolic RNA sensor, inducing the degradation of the MLV transcripts by the exosome, an RNA degradation system, on RNA granules.
Abstract: When host cells are infected by an RNA virus, pattern-recognition receptors (PRRs) recognize the viral RNA and induce the antiviral innate immunity. Toll-like receptor 7 (TLR7) detects the genomic RNA of incoming murine leukemia virus (MLV) in endosomes and mediates the antiviral response. However, the RNA-sensing PRR that recognizes the MLV in the cytosol is not fully understood. Here, we definitively demonstrate that zinc-finger antiviral protein (ZAP) acts as a cytosolic RNA sensor, inducing the degradation of the MLV transcripts by the exosome, an RNA degradation system, on RNA granules. Although the retinoic acid inducible gene I (RIG-I)–like receptors (RLRs) RIG-I and melanoma differentiation-associated protein 5 detect various RNA viruses in the cytosol and induce the type I IFN-dependent antiviral response, RLR loss does not alter the replication efficiency of MLV. In sharp contrast, the loss of ZAP greatly enhances the replication efficiency of MLV. ZAP localizes to RNA granules, where the processing-body and stress-granule proteins assemble. ZAP induces the recruitment of the MLV transcripts and exosome components to the RNA granules. The CCCH-type zinc-finger domains of ZAP, which are RNA-binding motifs, mediate its localization to RNA granules and MLV transcripts degradation by the exosome. Although ZAP was known as a regulator of RIG-I signaling in a human cell line, ZAP deficiency does not affect the RIG-I–dependent production of type I IFN in mouse cells. Thus, ZAP is a unique member of the cytosolic RNA-sensing PRR family that targets and eliminates intracellular RNA viruses independently of TLR and RLR family members.

67 citations

Journal ArticleDOI
TL;DR: Cooperative stimulation of these MAPKs via TLR4 and TLR2 appeared to induce selective synergy in anti-inflammatory cytokine production by murine conventional DCs, and blocking either p38 MAPK or JNK1/2 pathway completely inhibited the synergistic enhancement of the IL-10 production by DCs upon upLPS and Pam3CSK4 stimulation.

67 citations

Journal ArticleDOI
TL;DR: It is concluded that RelA and STAT3 are essential for stress-induced transcriptional remodeling in the liver and the subsequent activation of the acute phase response, whose functional role includes compartmentalization of local infection.
Abstract: The acute phase response is an evolutionarily conserved reaction in which physiological stress triggers the liver to remodel the blood proteome. Although thought to be involved in immune defense, the net biological effect of the acute phase response remains unknown. As the acute phase response is stimulated by diverse cytokines that activate either NF-κB or STAT3, we hypothesized that it could be eliminated by hepatocyte-specific interruption of both transcription factors. Here, we report that the elimination in mice of both NF-κB p65 (RelA) and STAT3, but neither alone, abrogated all acute phase responses measured. The failure to respond was consistent across multiple different infectious, inflammatory, and noxious stimuli, including pneumococcal pneumonia. When the effects of infection were analyzed in detail, pneumococcal pneumonia was found to alter the expression of over a thousand transcripts in the liver. This outcome was inhibited by the combined loss of RelA and STAT3. Moreover, this interruption of the acute phase response increased mortality and exacerbated bacterial dissemination during pneumonia, possibly as a result of acute humoral enhancement of macrophage opsonophagocytosis, which was impaired in the mutant mice. Thus, we conclude that RelA and STAT3 are essential for stress-induced transcriptional remodeling in the liver and the subsequent activation of the acute phase response, whose functional role includes compartmentalization of local infection.

67 citations

Journal ArticleDOI
TL;DR: R adaptor proteins MyD88 and TLR/IL-1R–domain-containing adaptor-inducing IFN-β in the inflammatory response to P. gingivalis and the ability to clear the bacterial infection are examined.
Abstract: Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a major periodontal pathogen. TLR2 plays a central role in the response to P. gingivalis infection in vivo. In its absence there is a weak inflammatory response; however, bacteria are cleared rapidly compared with wild-type mice. We examined the role of the TLR adaptor proteins MyD88 and TLR/IL-1R–domain-containing adaptor-inducing IFN-β in the inflammatory response to P. gingivalis in vivo and in the ability to clear the bacterial infection. Proinflammatory cytokine production in response to P. gingivalis infection depends on TLR2, but it does not require MyD88 or TLR/IL-1R–domain-containing adaptor-inducing IFN-β. In contrast, the generation of intracellular toxic oxygen species and the ultimate clearance of P. gingivalis infection depend critically on MyD88, independent of TLR2. Thus, robust cytokine production and bacterial clearance are independent events mediated by distinct signaling pathways following infection with P. gingivalis.

66 citations

Journal ArticleDOI
TL;DR: This is the first report that shows enhanced CXCL10 expression following neurotropic viral replication requires both intact TLR 9 and type I interferon signaling pathways, and is correlative with an increase in virus shedding and a reduction in neutrophil infiltration.

66 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations