scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: The in vivo roles of interleukin‐6 and nuclear factor for interleucin-6 expression that have been revealed by gene targeting as well as recent progress in understanding the interleukain‐ 6 gene regulation and signaling pathway in macrophages are reviewed.
Abstract: Interleukin-6 is a multifunctional cytokine important for host defense. Macrophages are potent producers of interleukin-6. Conversely, interleukin-6 acts on monocytes to induce their differentiation to macrophages. This paper reviews the in vivo roles of interleukin-6 and nuclear factor for interleu

53 citations

Journal ArticleDOI
TL;DR: Evidence is provided that zipper-interacting protein kinase interacts with STAT3 within the nucleus to regulate the transcriptional activity of STAT3 via phosphorylation of Ser727, and small interfering RNA-mediated reduction of ZIPK expression decreased leukemia inhibitory factor (LIF)- and IL-6-induced STAT3-dependent transcription.
Abstract: Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor that can be activated by cytokines and growth factors. It plays important roles in cell growth, apoptosis and cell transformation, and is constitutively active in a variety of tumor cells. In this study, we provide evidence that zipper-interacting protein kinase (ZIPK) interacts physically with STAT3. ZIPK specifically interacted with STAT3, and did not bind to STAT1, STAT4, STAT5a, STAT5b or STAT6. ZIPK phosphorylated STAT3 on serine 727 (Ser727) and enhanced STAT3 transcriptional activity. Small interfering RNA-mediated reduction of ZIPK expression decreased leukemia inhibitory factor (LIF)- and IL-6-induced STAT3-dependent transcription. Furthermore, LIF- and IL-6-mediated STAT3 activation stimulated ZIPK activity. Taken together, our data suggest that ZIPK interacts with STAT3 within the nucleus to regulate the transcriptional activity of STAT3 via phosphorylation of Ser727.

53 citations

Journal ArticleDOI
TL;DR: It is concluded that, at least individually, endogenous IL-12, IL-18, and IFN-γ do not have a significant effect on the pathogenesis of infection-stimulated bone resorption in vivo, suggesting possible functional redundancy in proinflammatory pathways.
Abstract: Periapical granulomas are induced by bacterial infection of the dental pulp and result in destruction of the surrounding alveolar bone. In previous studies we have reported that the bone resorption in this model is primarily mediated by macrophage-expressed interleukin-1 (IL-1). The expression and activity of IL-1 is in turn modulated by a network of Th1 and Th2 regulatory cytokines. In the present study, the functional roles of the Th1 cytokine gamma interferon (IFN-γ) and IFN-γ-inducing cytokines IL-12 and IL-18 were determined in a murine model of periapical bone destruction. IL-12−/−, IL-18−/−, and IFN-γ−/− mice were subjected to surgical pulp exposure and infection with a mixture of four endodontic pathogens, and bone destruction was determined by microcomputed tomography on day 21. The results indicated that all IL-12−/−, IL-18−/−, and IFN-γ−/− mice had similar infection-stimulated bone resorption in vivo as wild-type control mice. Mice infused with recombinant IL-12 also had resorption similar to controls. IFN-γ−/− mice exhibited significant elevations in IL-6, IL-10, IL-12, and tumor necrosis factor alpha in lesions compared to wild-type mice, but these modulations had no net effect on IL-1α levels. Recombinant IL-12, IL-18, and IFN-γ individually failed to consistently modulate macrophage IL-1α production in vitro. We conclude that, at least individually, endogenous IL-12, IL-18, and IFN-γ do not have a significant effect on the pathogenesis of infection-stimulated bone resorption in vivo, suggesting possible functional redundancy in proinflammatory pathways.

53 citations

Journal ArticleDOI
TL;DR: Data indicated that TgHSP70 signaling mechanisms were mediated by TLR2, MyD88, and IRAK4, but not byTLR4, and the expression of SOCS-1 suppressed theTLR2 signaling pathway.
Abstract: Peritoneal macrophages (PMs) from toll-like receptor 4 (TLR4)-deficient and wild-type (WT) mice were responsive to recombinant Toxoplasma gondii-derived heat shock protein 70 (rTgHSP70) and natural TgHSP70 (nTgHSP70) in NO release, but those from TLR2-, myeloid differentiation factor 88 (MyD88)-, and interleukin-1R-associated kinase 4 (IRAK4)-deficient mice were not. Polymyxin B did not inhibit PM activation by TgHSP70 and nTgHSP70 from WT and TLR4-deficient mice, while it inhibited PM activation by lipopolysaccharide. Pretreatment of PMs from WT but not from TLR4-deficient mice with rTgHSP70 resulted in suppression of NO release on restimulation with rTgHSP70. Similarly, pretreatment of PMs from WT but not TLR4-deficient mice with nTgHSP70 resulted in suppression of NO release on restimulation with nTgHSP70. Polymyxin B did not inhibit rTgHSP70- and nTgHSP70-induced tolerance of PMs from TLR4-deficient mice. Furthermore, PMs from WT mice increased suppressor of cytokine-signaling-1 (SOCS-1) expression after restimulation with rTgHSP70, while those from TLR4-deficient mice did not. Phosphorylation of JNK and I-κBα occurred in rTgHSP70-induced tolerance of PMs from TLR4-deficient mice, but not in that from WT mice. These data indicated that TgHSP70 signaling mechanisms were mediated by TLR2, MyD88, and IRAK4, but not by TLR4. On the other hand, signaling of TgHSP70-induced tolerance was mediated by TLR4, and the expression of SOCS-1 suppressed the TLR2 signaling pathway.

53 citations

Journal ArticleDOI
TL;DR: Results show that L‐CCR is a novel C‐C chemokine receptor related gene induced by LPS in macrophages and may play an important role in inflammatory responses.

53 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations