scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work shows that somatic deletion of the Ubc13 gene causes severe loss of multi lineages of immune cells, which is associated with profound atrophy of the thymus and bone marrow, as well as lethality of the mice, and suggests a role for Ubc 13 in the control of Wnt signaling in hematopoietic stem cells.
Abstract: The ubiquitin-conjugating enzyme Ubc13 mediates lysine-63-specific protein ubiquitination involved in signal transduction by immune receptors; however, the in vivo physiological functions of Ubc13 remain incompletely understood. Using Ubc13 conditional knockout mice, we show that somatic deletion of the Ubc13 gene causes severe loss of multi lineages of immune cells, which is associated with profound atrophy of the thymus and bone marrow, as well as lethality of the mice. Ubc13 has a cell-intrinsic function in mediating hematopoiesis and is essential for the survival and accumulation of hematopoietic stem cells in the bone marrow. Interestingly, loss of Ubc13 results in accumulation of β-catenin and hyperexpression of Wnt target genes, a condition known to cause impaired hematopoiesis. These results establish Ubc13 as a crucial regulator of hematopoiesis and suggest a role for Ubc13 in the control of Wnt signaling in hematopoietic stem cells.

32 citations

Journal ArticleDOI
TL;DR: No differences between TLR2 KO and WT mice were detected during postinfluenza pneumococcal pneumonia with respect to bacterial growth, lung inflammation, or cytokine/chemokine concentrations, with the exception of lower pulmonary levels of cytokine-induced neutrophil chemoattractant in TLR 2 KO mice.
Abstract: Influenza A can be complicated by secondary bacterial pneumonia, which is most frequently caused by Streptococcus pneumoniae and associated with uncontrolled pulmonary inflammation. Evidence points to Toll-like receptor (TLR) 2 as a possible mediator of this exaggerated lung inflammation: (1) TLR2 is the most important "sensor" for gram-positive stimuli, (2) TLR2 contributes to S. pneumoniae-induced inflammation, and (3) influenza A enhances TLR2 expression in various cell types. Therefore, the objective of this study was to determine the role of TLR2 in the host response to postinfluenza pneumococcal pneumonia. TLR2 knockout (KO) and wild-type (WT) mice were infected intranasally with influenza A virus. Fourteen days later they were administered with S. pneumoniae intranasally. Influenza was associated with a similar transient weight loss in TLR2 KO and WT mice. Both mouse strains were fully recovered and had completely cleared the virus at Day 14. Importantly, no differences between TLR2 KO and WT mice were detected during postinfluenza pneumococcal pneumonia with respect to bacterial growth, lung inflammation, or cytokine/chemokine concentrations, with the exception of lower pulmonary levels of cytokine-induced neutrophil chemoattractant in TLR2 KO mice. Toll-like receptor 2 does not contribute to host defense during murine postinfluenza pneumococcal pneumonia.

32 citations

Journal ArticleDOI
TL;DR: The ability of wild type Listeria monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and ΔhlyLM induce similar levels of cyclooxygenase 2 as mentioned in this paper.

31 citations

Journal ArticleDOI
TL;DR: In this work, elucidation and manipulation of immune signaling and interactions by nucleic acid adjuvants are essential for maximizing the immunogenicity and safety of viral and DNA vaccines.
Abstract: Optimal vaccine efficacy requires not only a protective antigen, but also a strong immune activator as an adjuvant. Most viral vaccines, such as influenza vaccines and nonviral genetic vaccines (e.g., DNA vaccines), contain nucleic acids, which appear to act as essential 'built-in' adjuvants. Specific receptors, including Toll-like receptors, retinoic acid-inducible protein-I-like receptors, and nucleotide-binding oligomerization domain-like receptors can detect specific nucleic acid patterns, depending on the immunized tissue, cell type and intracellular localization. The resulting immune activation is uniquely regulated by intra- and intercellular signaling pathways, which are indispensable for the ensuing vaccine immunogenicity, such as antigen-specific T- and B-cell responses. Thus, elucidation and manipulation of immune signaling and interactions by nucleic acid adjuvants are essential for maximizing the immunogenicity and safety of viral and DNA vaccines.

31 citations

Journal ArticleDOI
TL;DR: The structure of the mouse STAT3 gene was almost identical to that of the human STAT2 gene, including the number and size of exons, indicating that the exon-intron organization had already been accomplished before these two genes duplicated, and then these genes evolved to respond to different ligands.
Abstract: A variety of cytoklnes Induce the tyroslne phosphorylation of signal transducers and activators of transcription (STATs). Activation of the same STAT proteins by distinct cytokines and activation of different STAT proteins by each cytokine are thought to contribute to redundancy and plelotropy of cytokine actions respectively. STAT3 is rapidly tyrosine phosphorylated in response to IL-6, ciliary neurotrophlc factor, oncostatln M, leukemia Inhibitory factor, IL-11, granulocyte colony stimulation factor and epidermal growth factor. In this report we have Isolated and characterized the mouse genomic structure of STAT3. The mouse STAT3 gene consisted of 24 exons which spanned >37 kb. The structure of the mouse STAT3 gene was almost Identical to that of the human STAT2 gene, Including the number and size of exons, indicating that the exon-intron organization had already been accomplished before these two genes duplicated, and then these genes evolved to respond to different llgands. By molecular linkage analysis with interspecific backcross mice the STAT3 gene mapped at 1.4 cM proximal to D11MH59 on mouse chromosome 11. The promoter region contained potential regulatory elements such as GATA, NF-IL-6, PEBP2, Sp-1, AP-2 binding sites, cAMP response element, CAAT box and E-box. Transient expression of constructs harboring the 5' flanking region of the STAT3 gene fused to the luciferase gene showed that a 160 bp sequence upstream of the transcription start site conferred a basal and an IL-6-induclbl e promoter activity.

31 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations