scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings indicate that LPS-induced LPS tolerance mainly occurs through the down-regulation of surface expression of the TLR4-MD2 complex; in contrast, MALP-2-inducedLPS tolerance is due to modulation of the downstream cytoplasmic signaling pathways.
Abstract: A family of Toll-like receptor (TLR) mediates the cellular response to bacterial cell wall components; murine TLR2 and TLR4 recognize mycoplasmal lipopeptides (macrophage-activating lipopeptides, 2 kDa (MALP-2)) and LPS, respectively. Costimulation of mouse peritoneal macrophages with MALP-2 and LPS results in a marked increase in TNF-alpha production, showing the synergy between TLR2- and TLR4-mediated signaling pathways. Macrophages pretreated with LPS show hyporesponsiveness to the second LPS stimulation, termed LPS tolerance. The LPS tolerance has recently been shown to be primarily due to the down-regulation of surface expression of the TLR4-MD2 complex. When macrophages were treated with MALP-2, the cells showed hyporesponsiveness to the second MALP-2 stimulation, like LPS tolerance. Furthermore, macrophages pretreated with MALP-2 showed reduced production of TNF-alpha in response to LPS. LPS-induced activation of both NF-kappaB and c-Jun NH(2)-terminal kinase was severely impaired in MALP-2-pretreated cells. However, MALP-2-pretreated macrophages did not show any reduction in surface expression of the TLR4-MD2 complex. These findings indicate that LPS-induced LPS tolerance mainly occurs through the down-regulation of surface expression of the TLR4-MD2 complex; in contrast, MALP-2-induced LPS tolerance is due to modulation of the downstream cytoplasmic signaling pathways.

419 citations

Journal ArticleDOI
TL;DR: Krüppel-like factor 5 is established as a key component of the transcription factor network controlling adipocyte differentiation, and embryonic fibroblasts obtained from KLF5+/- mice showed much attenuated adipocytes differentiation, confirming the key role played by KLf5 in adipocyte differentiate.

417 citations

Journal ArticleDOI
TL;DR: It is shown that IRAK2 was essential for sustaining TLR-induced expression of genes encoding cytokines and activation of the transcription factor NF-κB, despite the fact that IRAk2 was dispensable foractivation of the initial signaling cascades.
Abstract: Members of the IRAK family of kinases mediate Toll-like receptor (TLR) signaling. Here we show that IRAK2 was essential for sustaining TLR-induced expression of genes encoding cytokines and activation of the transcription factor NF-kappaB, despite the fact that IRAK2 was dispensable for activation of the initial signaling cascades. IRAK2 was activated 'downstream' of IRAK4, like IRAK1, and TLR-induced cytokine production was abrogated in the absence of both IRAK1 and IRAK2. Whereas the kinase activity of IRAK1 decreased within 1 h of TLR2 stimulation, coincident with IRAK1 degradation, the kinase activity of IRAK2 was sustained and peaked at 8 h after stimulation. Thus, IRAK2 is critical in late-phase TLR responses, and IRAK1 and IRAK2 are essential for the initial responses to TLR stimulation.

415 citations

Journal ArticleDOI
TL;DR: Generation of PI3P in the normallyPI3P-deficient ER membrane makes the organelle a platform for autophagosome formation.
Abstract: Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.

413 citations

01 Jan 2010
TL;DR: The role of TLR biology in host defense and disease has been discussed in this article, where it has been shown that TLR signaling is associated with the pathogenesis of inflammatory and autoimmune diseases and that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

402 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations