scispace - formally typeset
Search or ask a question
Author

Shizuo Akira

Bio: Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: Results delineate contrasting compartmental requirements for IL-18 and suggest that preservation of local, hepatic IFN-γ production is critical for host defense during murine cytomegalovirus challenge.
Abstract: Optimal protective effects for defense against infection require orchestration of immune responses spanning multiple host compartments and divergent local regulation at particular sites. During murine cytomegalovirus infections known to target spleen and liver, IL-12-induced IFN-γ from NK cells is crucial for resistance. However, the roles for IL-18 and/or IL-12 in regulating hepatic IFN-γ responses, as compared with systemic or splenic responses, have not been defined. In this report, mice genetically deficient in either IL-18 or IL-12p35 exhibited up to 95% reductions in systemic and splenic IFN-γ responses. Surprisingly, IFN-γ responses were preserved in the livers of IL-18-deficient, but not IL-12p35-deficient, mice. Cytokine requirements for host survival also differed. Under conditions where mice lacking IL-12p35 exhibited 100% mortality, those lacking IL-18 survived. Taken together, our results delineate contrasting compartmental requirements for IL-18 and suggest that preservation of local, hepatic IFN-γ production is critical for host defense during murine cytomegalovirus challenge.

189 citations

Journal ArticleDOI
TL;DR: In vitro kinase assay revealed that both DRAKs are autophosphorylated and phosphorylate myosin light chain as an exogenous substrate, although the kinase activity of D RAK2 is significantly lower than that of DRAk1.

189 citations

Journal ArticleDOI
TL;DR: This study demonstrates that A20 is a candidate negative regulator of the signaling cascade to IRF-3 activation in the innate antiviral response, and knocking down of A20 expression by RNA interference results in enhanced IRf-3-dependent transcription triggered by the stimulation of TLR3 or virus infection.
Abstract: IFN regulatory factor 3 (IRF-3) is a critical transcription factor that regulates an establishment of innate immune status following detection of viral pathogens. Recent studies have revealed that two IkappaB kinase (IKK)-like kinases, NF-kappaB-activating kinase/Traf family member-associated NF-kappaB activator-binding kinase 1 and IKK-i/IKKepsilon, are responsible for activation of IRF-3, but the regulatory mechanism of the IRF-3 signaling pathway has not been fully understood. In this study, we report that IRF-3 activation is suppressed by A20, which was initially identified as an inhibitor of apoptosis and inducibly expressed by dsRNA. A20 physically interacts with NF-kappaB-activating kinase/Traf family member-associated NF-kappaB activator-binding kinase 1 and IKK-i/IKKepsilon, and inhibits dimerization of IRF-3 following engagement of TLR3 by dsRNA or Newcastle disease virus infection, leading to suppression of the IFN stimulation response element- and IFN-beta promoter-dependent transcription. Importantly, knocking down of A20 expression by RNA interference results in enhanced IRF-3-dependent transcription triggered by the stimulation of TLR3 or virus infection. Our study thus demonstrates that A20 is a candidate negative regulator of the signaling cascade to IRF-3 activation in the innate antiviral response.

188 citations

Journal ArticleDOI
TL;DR: Assessing the effect of the TLR9 and/or TLR7 deletion on the production of various autoantibodies and the development of lupus nephritis in C57BL/6 mice congenic for the Nba2 (NZB autoimmunity 2) locus indicatesTLR7 has a pivotal role in a wide variety of autoimmune responses against DNA- and RNA-containing nuclear antigens, retroviral gp70 and glomerular matrix antig

187 citations

Journal ArticleDOI
TL;DR: The results indicate that T.cruzi parasites elicit an alternative inflammatory pathway independent of TLR2 that is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.
Abstract: Studies performed in vitro suggest that activation of Toll-like receptors (TLRs) by parasite-derived molecules may initiate inflammatory responses and host innate defense mechanisms against Trypanosoma cruzi. Here, we evaluated the impact of TLR2 and myeloid differentiation factor 88 (MyD88) deficiencies in host resistance to infection with T. cruzi. Our results show that macrophages derived from TLR2 (-/-) and MyD88(-/-) mice are less responsive to GPI-mucin derived from T. cruzi trypomastigotes and parasites. In contrast, the same cells from TLR2(-/-) still produce TNF-alpha, IL-12, and reactive nitrogen intermediates (RNI) upon exposure to live T. cruzi trypomastigotes. Consistently, we show that TLR2(-/-) mice mount a robust proinflammatory cytokine response as well as RNI production during the acute phase of infection with T. cruzi parasites. Further, deletion of the functional TLR2 gene had no major impact on parasitemia nor on mortality. In contrast, the MyD88(-/-) mice had a diminished cytokine response and RNI production upon acute infection with T. cruzi. More importantly, we show that MyD88(-/-) mice are more susceptible to infection with T. cruzi as indicated by the higher parasitemia and accelerated mortality, as compared with the wild-type mice. Together, our results indicate that T. cruzi parasites elicit an alternative inflammatory pathway independent of TLR2. This pathway is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.

187 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations