scispace - formally typeset
Search or ask a question
Author

Shu Li

Bio: Shu Li is an academic researcher from Wuhan University. The author has contributed to research in topics: IRF3 & Innate immune system. The author has an hindex of 20, co-authored 32 publications receiving 2323 citations.

Papers
More filters
Journal ArticleDOI
17 Oct 2008-Immunity
TL;DR: The results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

1,201 citations

Journal ArticleDOI
Wei-Wei Luo1, Shu Li1, Chen Li1, Huan Lian1, Qing Yang1, Bo Zhong1, Hong-Bing Shu1 
TL;DR: It is suggested that iRhom2 is essential for STING activity, as it regulates TRAPβ-mediated translocation and EIF3S5-mediated deubiquitination of STING.
Abstract: STING is a central adaptor in the innate immune response to DNA viruses. However, the manner in which STING activity is regulated remains unclear. We identified iRhom2 ('inactive rhomboid protein 2') as a positive regulator of DNA-virus-triggered induction of type I interferons. iRhom2 deficiency markedly impaired DNA-virus- and intracellular-DNA-induced signaling in cells, and iRhom2-deficient mice were more susceptible to lethal herpes simplex virus type 1 (HSV-1) infection. iRhom2 was constitutively associated with STING and acted in two distinct processes to regulate STING activity. iRhom2 recruited the translocon-associated protein TRAPβ to the STING complex to facilitate trafficking of STING from the endoplasmic reticulum to perinuclear microsomes. iRhom2 also recruited the deubiquitination enzyme EIF3S5 to maintain the stability of STING through removal of its K48-linked polyubiquitin chains. These results suggest that iRhom2 is essential for STING activity, as it regulates TRAPβ-mediated translocation and EIF3S5-mediated deubiquitination of STING.

190 citations

Journal ArticleDOI
Shu Li1, Hao Zheng1, Ai-Ping Mao1, Bo Zhong1, Ying Li1, Yu Liu1, Yan Gao1, Yong Ran1, Po Tien1, Hong-Bing Shu1 
TL;DR: It is suggested that OTUB1 and OTUB2 negatively regulate virus-triggered type I IFN induction and cellular antiviral response by deubiquitinating TRAF3 and -6.

158 citations

Journal ArticleDOI
TL;DR: The finding that the levels of downstream antiviral genes induced by UL82-deficient HCMV were higher than those induced by wild-type HCMV were revealed, revealing an important mechanism of immune evasion by H CMV.

133 citations

Journal ArticleDOI
TL;DR: Findings suggest that DAK is a physiological suppressor of MDA5 and specifically inhibits Mda5- but not RIG-I-mediated innate antiviral signaling.
Abstract: Viral infection leads to activation of the transcription factors interferon regulatory factor-3 and NF-κB, which collaborate to induce type I IFNs. The RNA helicase proteins RIG-I and MDA5 were recently identified as two cytoplasmic viral RNA sensors that recognize different species of viral RNAs produced during viral replication. In this study, we identified DAK, a functionally unknown dihydroacetone kinase, as a specific MDA5-interacting protein. DAK was associated with MDA5, but not RIG-I, under physiological conditions. Overexpression of DAK inhibited MDA5- but not RIG-I- or TLR3-mediated IFN-β induction. Overexpression of DAK also inhibited cytoplasmic dsRNA and SeV-induced activation of the IFN-β promoter, whereas knockdown of endogenous DAK by RNAi activated the IFN-β promoter, and increased cytoplasmic dsRNA- or SeV-triggered activation of the IFN-β promoter. In addition, overexpression of DAK inhibited MDA5- but not RIG-I-mediated antiviral activity, whereas DAK RNAi increased cytoplasmic dsRNA-triggered antiviral activity. These findings suggest that DAK is a physiological suppressor of MDA5 and specifically inhibits MDA5- but not RIG-I-mediated innate antiviral signaling.

132 citations


Cited by
More filters
Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.

6,987 citations

Journal ArticleDOI
TL;DR: This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response and medical implications are discussed.
Abstract: Summary: The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications.

2,565 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: It is shown that STING (stimulator of interferon genes) is critical for the induction of IFN by non-CpG intracellular DNA species produced by various DNA pathogens after infection.
Abstract: The innate immune system is critical for the early detection of invading pathogens and for initiating cellular host defence countermeasures, which include the production of type I interferon (IFN). However, little is known about how the innate immune system is galvanized to respond to DNA-based microbes. Here we show that STING (stimulator of interferon genes) is critical for the induction of IFN by non-CpG intracellular DNA species produced by various DNA pathogens after infection. Murine embryonic fibroblasts, as well as antigen presenting cells such as macrophages and dendritic cells (exposed to intracellular B-form DNA, the DNA virus herpes simplex virus 1 (HSV-1) or bacteria Listeria monocytogenes), were found to require STING to initiate effective IFN production. Accordingly, Sting-knockout mice were susceptible to lethal infection after exposure to HSV-1. The importance of STING in facilitating DNA-mediated innate immune responses was further evident because cytotoxic T-cell responses induced by plasmid DNA vaccination were reduced in Sting-deficient animals. In the presence of intracellular DNA, STING relocalized with TANK-binding kinase 1 (TBK1) from the endoplasmic reticulum to perinuclear vesicles containing the exocyst component Sec5 (also known as EXOC2). Collectively, our studies indicate that STING is essential for host defence against DNA pathogens such as HSV-1 and facilitates the adjuvant activity of DNA-based vaccines.

2,042 citations

Journal ArticleDOI
TL;DR: In this review, a comprehensively review the recent progress in the field of PAMP recognition by PRRs and the signaling pathways activated byPRRs.
Abstract: Microbial infection initiates complex interactions between the pathogen and the host. Pathogens express several signature molecules, known as pathogen-associated molecular patterns (PAMPs), which are essential for survival and pathogenicity. PAMPs are sensed by evolutionarily conserved, germline-encoded host sensors known as pathogen recognition receptors (PRRs). Recognition of PAMPs by PRRs rapidly triggers an array of anti-microbial immune responses through the induction of various inflammatory cytokines, chemokines and type I interferons. These responses also initiate the development of pathogen-specific, long-lasting adaptive immunity through B and T lymphocytes. Several families of PRRs, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and DNA receptors (cytosolic sensors for DNA), are known to play a crucial role in host defense. In this review, we comprehensively review the recent progress in the field of PAMP recognition by PRRs and the signaling pathways activated by PRRs.

1,896 citations

Journal ArticleDOI
27 May 2011-Immunity
TL;DR: Understanding the processes of RLR signaling and response will provide insights to guide RLR-targeted therapeutics for antiviral and immune-modifying applications.

1,565 citations