scispace - formally typeset
Search or ask a question
Author

Shu Lih Oh

Bio: Shu Lih Oh is an academic researcher from Ngee Ann Polytechnic. The author has contributed to research in topics: Electroencephalography & Deep learning. The author has an hindex of 23, co-authored 47 publications receiving 4069 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes and achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.

1,117 citations

Journal ArticleDOI
TL;DR: A 9-layer deep convolutional neural network (CNN) is developed to automatically identify 5 different categories of heartbeats in ECG signals to serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmicheartbeats.

938 citations

Journal ArticleDOI
TL;DR: A convolutional neural network algorithm is implemented for the automated detection of a normal and MI ECG beats (with noise and without noise) and can accurately detect the unknown ECG signals even with noise.

645 citations

Journal ArticleDOI
TL;DR: An automated system using a combination of convolutional neural network (CNN) and long short-term memory (LSTM) for diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branches block (RBBB) and atrial premature beats (APB), and premature ventricular contraction (PVC) on ECG signals.

494 citations

Journal ArticleDOI
TL;DR: It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere, consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere.

389 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A new model for automatic COVID-19 detection using raw chest X-ray images is presented and can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.

1,868 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an end-to-end deep learning approach can classify a broad range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of cardiologists.
Abstract: Computerized electrocardiogram (ECG) interpretation plays a critical role in the clinical ECG workflow1. Widely available digital ECG data and the algorithmic paradigm of deep learning2 present an opportunity to substantially improve the accuracy and scalability of automated ECG analysis. However, a comprehensive evaluation of an end-to-end deep learning approach for ECG analysis across a wide variety of diagnostic classes has not been previously reported. Here, we develop a deep neural network (DNN) to classify 12 rhythm classes using 91,232 single-lead ECGs from 53,549 patients who used a single-lead ambulatory ECG monitoring device. When validated against an independent test dataset annotated by a consensus committee of board-certified practicing cardiologists, the DNN achieved an average area under the receiver operating characteristic curve (ROC) of 0.97. The average F1 score, which is the harmonic mean of the positive predictive value and sensitivity, for the DNN (0.837) exceeded that of average cardiologists (0.780). With specificity fixed at the average specificity achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all rhythm classes. These findings demonstrate that an end-to-end deep learning approach can classify a broad range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of cardiologists. If confirmed in clinical settings, this approach could reduce the rate of misdiagnosed computerized ECG interpretations and improve the efficiency of expert human ECG interpretation by accurately triaging or prioritizing the most urgent conditions. Analysis of electrocardiograms using an end-to-end deep learning approach can detect and classify cardiac arrhythmia with high accuracy, similar to that of cardiologists.

1,632 citations

01 Mar 1995
TL;DR: This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series and results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages.
Abstract: : This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series. Two approaches to feature selection are used. First, a subset enumeration method is used to determine which financial indicators are most useful for aiding in prediction of the S&P 500 futures daily price. The candidate indicators evaluated include RSI, Stochastics and several moving averages. Results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages. The second approach to feature selection is calculation of individual saliency metrics. A new decision boundary-based individual saliency metric, and a classifier independent saliency metric are developed and tested. Ruck's saliency metric, the decision boundary based saliency metric, and the classifier independent saliency metric are compared for a data set consisting of the RSI and Stochastics indicators as well as delayed closing price values. The decision based metric and the Ruck metric results are similar, but the classifier independent metric agrees with neither of the other metrics. The nine most salient features, determined by the decision boundary based metric, are used to train a neural network and the results are presented and compared to other published results. (AN)

1,545 citations

Journal ArticleDOI
TL;DR: In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes and achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.

1,117 citations