scispace - formally typeset
Search or ask a question
Author

Shuai Wang

Bio: Shuai Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Graphene & Medicine. The author has an hindex of 82, co-authored 670 publications receiving 27554 citations. Previous affiliations of Shuai Wang include University of Science and Technology of China & Henan University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors study the semi-arid Loess Plateau in China, where the "Grain to Green" large-scale revegetation programme has been in operation since 1999.
Abstract: Revegetation of degraded ecosystems provides opportunities for carbon sequestration and bioenergy production(1,2). However, vegetation expansion inwater-limited areas creates potentially conflicting demands for water between the ecosystem and humans(3). Current understanding of these competing demands is still limited(4). Here, we study the semi-arid Loess Plateau in China, where the 'Grain to Green' large-scale revegetation programme has been in operation since 1999. As expected, we found that the new planting has caused both net primary productivity (NPP) and evapotranspiration (ET) to increase. Also the increase of ET has induced a significant (p < 0.001) decrease in the ratio of river runoff to annual precipitation across hydrological catchments. From currently revegetated areas and human water demand, we estimate a threshold of NPP of 400 +/- 5 g C m(-2) yr(-1) above which the population will suffer water shortages. NPP in this region is found to be already close to this limit. The threshold of NPP could change by 36% in the worst case of climate drying and high human withdrawals, to C 43% in the best case. Our results develop a new conceptual framework to determine the critical carbon sequestration that is sustainable in terms of both ecological and socio-economic resource demands in a coupled anthropogenic-biological system.

1,130 citations

Journal ArticleDOI
05 Aug 2009-ACS Nano
TL;DR: This work demonstrates a facile means to generate fluorescent carbon nanoribbons, nanoparticles, and graphene from graphite electrode using ionic liquid-assisted electrochemical exfoliation and develops strategies to control the distribution of the exfoliated products.
Abstract: In this work we demonstrate a facile means to generate fluorescent carbon nanoribbons, nanoparticles, and graphene from graphite electrode using ionic liquid-assisted electrochemical exfoliation. A time-dependence study of products exfoliated from the graphite anode allows the reconstruction of the exfoliation mechanism based on the interplay of anodic oxidation and anion intercalation. We have developed strategies to control the distribution of the exfoliated products. In addition, the fluorescence of these carbon nanomaterials can be tuned from the visible to ultraviolet region by controlling the water content in the ionic liquid electrolyte.

1,084 citations

Journal ArticleDOI
TL;DR: The development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional conductive scaffold for loading additional electroactive materials.
Abstract: We report on the development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional (3D) conductive scaffold for loading additional electroactive materials. The resulting pseudocapacitive electrode is found to be superior to that based on the sibling NiCo2O4 nanorod arrays, which are currently used in supercapacitor research due to the much higher electrical conductivity of NiCo2S4. A series of electroactive metal oxide materials, including CoxNi1–x(OH)2, MnO2, and FeOOH, were deposited on the NiCo2S4 nanotube arrays by facile electrodeposition and their pseudocapacitive properties were explored. Remarkably, the as-formed CoxNi1–x(OH)2/NiCo2S4 nanotube array electrodes showed the highest discharge areal capacitance (2.86 F cm–2 at 4 mA cm–2), good rate capability (still 2.41 F cm–2 at 20 mA cm–2), and excellent cycling stability (∼4% loss after the repetitive ...

1,008 citations

Journal ArticleDOI
TL;DR: The authors used an attribution approach to analyse 60 years of runoff and sediment load observations from the traverse of the Yellow River over China's Loess Plateau -the source of nearly 90% of its sediment load.
Abstract: The erosion, transport and redeposition of sediments shape the Earth's surface, and affect the structure and function of ecosystems and society(1,2). The Yellow River was once the world's largest carrier of fluvial sediment, but its sediment load has decreased by approximately 90% over the past 60 years(3). The decline in sediment load is due to changes in water discharge and sediment concentration, which are both influenced by regional climate change and human activities. Here we use an attribution approach to analyse 60 years of runoff and sediment load observations from the traverse of the Yellow River over China's Loess Plateau - the source of nearly 90% of its sediment load. We find that landscape engineering, terracing and the construction of check dams and reservoirs were the primary factors driving reduction in sediment load from the 1970s to 1990s, but large-scale vegetation restoration projects have also reduced soil erosion from the 1990s onwards. We suggest that, as the ability of existing dams and reservoirs to trap sediments declines in the future, erosion rates on the Loess Plateau will increasingly control the Yellow River's sediment load.

874 citations

Journal ArticleDOI
TL;DR: Transition from use to dependence was highest for nicotine users, followed by cocaine, alcohol and cannabis users, and the existence of common predictors of transition dependence across substances suggests that shared mechanisms are involved.

540 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations