scispace - formally typeset
Search or ask a question
Author

Shuang Cai

Bio: Shuang Cai is an academic researcher from Zunyi Medical College. The author has contributed to research in topics: Glioma & Metformin. The author has an hindex of 1, co-authored 2 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of metformin on breast cancer was explored and the underlying mechanism of the mechanism was clarified. But, the results showed that the effect was mediated by directly targeting glutathione peroxidase 4 (GPX4) and led to downregulation of GPX4.
Abstract: Metformin is a widely prescribed hypoglycemic drug. Many studies have shown its anti-cancer properties. In the present study, we aimed to explore the effect of metformin on breast cancer and clarify the underlying mechanism. Our results showed that metformin induced ferroptosis in MDA-MB-231 cells through upregulating miR-324-3p expression. Overexpression of miR-324-3p inhibited cancer cell viability. miR-324-3p inhibitor promoted cell viability. Further studies showed that the effect of miR-324-3p was mediated by directly targeting glutathione peroxidase 4 (GPX4). miR-324-3p bound to the 3'-UTR of GPX4 and led to the downregulation of GPX4. In vivo studies showed that metformin induced ferroptosis by upregulating miR-324-3p in the xenograft model of breast cancer in mice. Our study suggested that metformin promotes ferroptosis of breast cancer by targeting the miR-324-3p/GPX4 axis. Metformin could act as a potential anti-cancer agent through the induction of ferroptosis.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of PTP1B on the proliferation characteristics of glioma were explored using 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) and tumor xenografts in mice.
Abstract: Glioma is one of the most pervasive and invasive primary malignancies in the central nervous system. Due to its abnormal proliferation, glioma remains hard to cure at present. Protein tyrosine phosphatase 1B (PTP1B) has been proved to be involved in the process of proliferation in many malignancies. However, whether PTP1B is involved in the proliferation of glioma and how it acts are still unclear. In this study, the PTP1B expressions in glioma tissues and cells were determined by quantitative real-time PCR and western blot analysis. The effects of PTP1B on the proliferation characteristics of glioma were explored using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assay, and tumor xenografts in mice. We found that the protein and mRNA levels of PTP1B in glioma tissues were significantly higher than those in paired nontumor tissues. MTT and clone formation assays showed that PTP1B is closely related to human glioma cell proliferation. In addition, TargetScan revealed that miR-34c regulates PTP1B. Mechanistically, we proved that miR-34c negatively regulates PTP1B and then participates in the regulation of glioma cell proliferation in vivo. Collectively, these results suggested that miR-34c inhibits the proliferation of human glioma cells by targeting PTP1B, which will provide a potential target for the treatment of glioma.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc −/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Abstract: The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc −), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc −/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc −/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc −/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.

30 citations

Journal ArticleDOI
TL;DR: This review systematically summarized the relationship between ferroptosis-associated ncRNAs and cancer progression and may provide new ideas for exploring novel diagnostic and therapeutic biomarkers for cancer in the future.
Abstract: Ferroptosis is a novel form of programmed cell death, and it is characterized by iron-dependent oxidative damage, lipid peroxidation and reactive oxygen species accumulation. Notable studies have revealed that ferroptosis plays vital roles in tumor occurrence and that abundant ferroptosis in cells can inhibit tumor progression. Recently, some noncoding RNAs (ncRNAs), particularly microRNAs, long noncoding RNAs, and circular RNAs, have been shown to be involved in biological processes of ferroptosis, thus affecting cancer growth. However, the definite regulatory mechanism of this phenomenon is still unclear. To clarify this issue, increasing studies have focused on the regulatory roles of ncRNAs in the initiation and development of ferroptosis and the role of ferroptosis in progression of various cancers, such as lung, liver, and breast cancers. In this review, we systematically summarized the relationship between ferroptosis-associated ncRNAs and cancer progression. Moreover, additional evidence is needed to identify the role of ferroptosis-related ncRNAs in cancer progression. This review will help us to understand the roles of ncRNAs in ferroptosis and cancer progression and may provide new ideas for exploring novel diagnostic and therapeutic biomarkers for cancer in the future.

29 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors constructed a predictive signature based on ferroptosis-related long noncoding RNAs (lncRNAs) to predict the prognosis of bladder cancer patients.
Abstract: Background: Ferroptosis is closely related to the occurrence and development of cancer. An increasing number of studies have induced ferroptosis as a treatment strategy for cancer. However, the predictive value of ferroptosis-related lncRNAs in bladder cancer (BC) still need to be further elucidated. The purpose of this study was to construct a predictive signature based on ferroptosis-related long noncoding RNAs (lncRNAs) to predict the prognosis of BC patients. Methods: We downloaded RNA-seq data and the corresponding clinical and prognostic data from The Cancer Genome Atlas (TCGA) database and performed univariate and multivariate Cox regression analyses to obtain ferroptosis-related lncRNAs to construct a predictive signature. The Kaplan-Meier method was used to analyze the overall survival (OS) rate of the high-risk and low-risk groups. Gene set enrichment analysis (GSEA) was performed to explore the functional differences between the high- and low-risk groups. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the predictive signature and immune status. Finally, the correlation between the predictive signature and the treatment response of BC patients was analyzed. Results: We constructed a signature composed of nine ferroptosis-related lncRNAs (AL031775.1, AL162586.1, AC034236.2, LINC01004, OCIAD1-AS1, AL136084.3, AP003352.1, Z84484.1, AC022150.2). Compared with the low-risk group, the high-risk group had a worse prognosis. The ferroptosis-related lncRNA signature could independently predict the prognosis of patients with BC. Compared with clinicopathological variables, the ferroptosis-related lncRNA signature has a higher diagnostic efficiency, and the area under the receiver operating characteristic curve was 0.707. When patients were stratified according to different clinicopathological variables, the OS of patients in the high-risk group was shorter than that of those in the low-risk group. GSEA showed that tumor- and immune-related pathways were mainly enriched in the high-risk group. ssGSEA showed that the predictive signature was significantly related to the immune status of BC patients. High-risk patients were more sensitive to anti-PD-1/L1 immunotherapy and the conventional chemotherapy drugs sunitinib, paclitaxel, cisplatin, and docetaxel. Conclusions: The predictive signature can independently predict the prognosis of BC patients, provides a basis for the mechanism of ferroptosis-related lncRNAs in BC and provides clinical treatment guidance for patients with BC.

23 citations

Journal ArticleDOI
TL;DR: In this article, the anticancer effects of metformin and its potential modulation of several novel types of non-apoptotic cell death, including ferroptosis, pyroptoses, and necroptosis are discussed.
Abstract: Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.

22 citations

Journal ArticleDOI
TL;DR: In this article , a review of ncRNAs implicated in the regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic applications is presented.
Abstract: Ferroptosis is a recently defined form of regulated cell death, which is biochemically and morphologically distinct from traditional forms of programmed cell death such as apoptosis or necrosis. It is driven by iron, reactive oxygen species, and phospholipids that are oxidatively damaged, ultimately resulting in mitochondrial damage and breakdown of membrane integrity. Numerous cellular signaling pathways and molecules are involved in the regulation of ferroptosis, including enzymes that control the cellular redox status. Alterations in the ferroptosis-regulating network can contribute to the development of various diseases, including cancer. Evidence suggests that ferroptosis is commonly suppressed in cancer cells, allowing them to survive and progress. However, cancer cells which are resistant to common chemotherapeutic drugs seem to be highly susceptible to ferroptosis inducers, highlighting the great potential of pharmacologic modulation of ferroptosis for cancer treatment. Non-coding RNAs (ncRNAs) are considered master regulators of various cellular processes, particularly in cancer where they have been implicated in all hallmarks of cancer. Recent work also demonstrated their involvement in the molecular control of ferroptosis. Hence, ncRNA-based therapeutics represent an exciting alternative to modulate ferroptosis for cancer therapy. This review summarizes the ncRNAs implicated in the regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic applications.

20 citations