scispace - formally typeset
Search or ask a question
Author

Shuang-Quan Zang

Bio: Shuang-Quan Zang is an academic researcher from Zhengzhou University. The author has contributed to research in topics: Nanoclusters & Luminescence. The author has an hindex of 32, co-authored 71 publications receiving 3761 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal- organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.
Abstract: Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal–organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal–organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal–organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials. The properties of discrete species can sometimes be improved by fixing them into extended materials. This strategy has now been applied to silver(I) chalcogenide/chalcogenolate clusters, resulting in a metal–organic framework with enhanced stability and fluorescent sensing capabilities. Crystallographic analysis allows precise structural determination of guest binding, which is responsible for both emission turn-off and multicoloured turn-on.

692 citations

Journal ArticleDOI
TL;DR: This review highlights the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism, and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.
Abstract: Developing efficient sensor materials with superior performance for selective, fast and sensitive detection of gases and volatile organic compounds (VOCs) is essential for human health and environmental protection, through monitoring indoor and outdoor air pollutions, managing industrial processes, controlling food quality and assisting early diagnosis of diseases. Metal–organic frameworks (MOFs) are a unique type of crystalline and porous solid material constructed from metal nodes (metal ions or clusters) and functional organic ligands. They have been investigated extensively for possible use as high performance sensors for the detection of many different gases and VOCs in recent years, due to their large surface area, tunable pore size, functionalizable sites and intriguing properties, such as electrical conductivity, magnetism, ferroelectricity, luminescence and chromism. The high porosity of MOFs allows them to interact strongly with various analytes, including gases and VOCs, thus resulting in easily measurable responses to different physicochemical parameters. Although much of the recent work on MOF-based luminescent sensors have been summarized in several excellent reviews (up to 2018), a comprehensive overview of these materials for sensing gases and VOCs based on chemiresistive, magnetic, ferroelectric, and colorimertic mechanisms is missing. In this review, we highlight the most recent progress in developing MOF sensing and switching materials with an emphasis on sensing mechanisms based on electricity, magnetism, ferroelectricity and chromism. We provide a comprehensive analysis on the MOF–analyte interactions in these processes, which play a key role in the sensing performance of the MOF-based sensors and switches. We discuss in detail possible applications of MOF-based sensing and switching materials in detecting oxygen, water vapor, toxic industrial gases (such as hydrogen sulfide, ammonia, sulfur dioxide, nitrous oxide, carbon oxides and carbon disulfide) and VOCs (such as aromatic and aliphatic hydrocarbons, ketones, alcohols, aldehydes, chlorinated hydrocarbons and N,N′-dimethylformamide). Overall, this review serves as a timely source of information and provides insight for the future development of advanced MOF materials as next-generation gas and VOC sensors.

631 citations

Journal ArticleDOI
Rui Wang1, Xi-Yan Dong, Jiao Du1, Jin-Yan Zhao1, Shuang-Quan Zang1 
TL;DR: This strategy of using a diverse MOF as a structural and compositional material to create a new multifunctional composite/hybrid may expand the opportunities to explore highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.
Abstract: Metal-organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom-distributed precursor and efficient self-sacrificial template to fabricate hierarchical porous-carbon-related nanostructured functional materials. For the first time, a Cu-based MOF, i.e., Cu-NPMOF is used, whose linkers contain nitrogen and phosphorus heteroatoms, as a single precursor and template to prepare novel Cu3 P nanoparticles (NPs) coated by a N,P-codoped carbon shell that is extended to a hierarchical porous carbon matrix with identical uniform N and P doping (termed Cu3 P@NPPC) as an electrocatalyst. Cu3 P@NPPC demonstrates outstanding activity for both the hydrogen evolution and oxygen reduction reaction, representing the first example of a Cu3 P-based bifunctional catalyst for energy-conversion reactions. The high performances are ascribed to the high specific surface area, the synergistic effects of the Cu3 P NPs with intrinsic activity, the protection of the carbon shell, and the hierarchical porous carbon matrix doped by multiheteroatoms. This strategy of using a diverse MOF as a structural and compositional material to create a new multifunctional composite/hybrid may expand the opportunities to explore highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.

499 citations

Journal ArticleDOI
TL;DR: This mini-Review first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts toward ORR, with an emphasis on synthesis strategy, component, morphology, structure, electrocatalyst performance, and reaction mechanism.
Abstract: In view of the clean and sustainable energy, metal-organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF-based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal-air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF-based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF-based ORR electrocatalysts are also discussed.

404 citations

Journal ArticleDOI
TL;DR: The solvothermal synthesis of a new proton-conducting MOF consisting of a layered anionic framework [Eu(L)]- and interlayer-embedded counter cations (Me2NH2)+, which interact with adjacent uncoordinated O atoms of phosphonate groups to form strongly (N-H·O) hydrogen-bonded chains aligned parallel to the c-axis is reported.
Abstract: Recently, research on metal–organic frameworks (MOFs) serving as a new type of proton conductive material has resulted in many exciting achievements. However, direct observation of a well-established proton-transfer mechanism still remains challenging in MOFs and other crystalline compounds, let alone other conductive materials. Herein we report the solvothermal synthesis of a new proton-conducting MOF, (Me2NH2)[Eu(L)] (H4L = 5-(phosphonomethyl)isophthalic acid). The compound consists of a layered anionic framework [Eu(L)]− and interlayer-embedded counter cations (Me2NH2)+, which interact with adjacent uncoordinated O atoms of phosphonate groups to form strongly (N–H···O) hydrogen-bonded chains aligned parallel to the c-axis. Facile proton transfer along these chains endows the compound with single-crystal anhydrous conductivity of 1.25 × 10–3 S·cm–1 at 150 °C, and water-assisted proton conductivity for a compacted pellet of microcrystalline crystals attains 3.76 × 10–3 S·cm–1 at 100 °C and 98% relative h...

253 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations

Journal ArticleDOI
TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Abstract: Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.

1,233 citations

Journal ArticleDOI
TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal–organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.

970 citations

Journal ArticleDOI
TL;DR: Some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices are reviewed.
Abstract: In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

786 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications and highlights OSMs as a multifunctional platform for a wide range of biomedical applications.
Abstract: Biophotonics as a highly interdisciplinary frontier often requires the assistance of optical agents to control the light pathways in cells, tissues and living organisms for specific biomedical applications. Organic semiconducting materials (OSMs) composed of π-conjugated building blocks as the optically active components have recently emerged as a promising category of biophotonic agents. OSMs possess common features including excellent optical properties, good photostability and biologically benign composition. This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications. OSMs have been exploited as imaging agents to transduce biomolecular interactions into second near-infrared fluorescence, chemiluminescence, afterglow or photoacoustic signals, enabling deep-tissue ultrasensitive imaging of biological tissues, disease biomarkers and physiological indexes. By fine-tuning the molecular structures, OSMs can also convert light energy into cytotoxic free radicals or heat, allowing for effective cancer phototherapy. Due to their instant light response and efficient light-harvesting properties, precise regulation of biological activities using OSMs as remote transducers has been demonstrated for protein ion channels, gene transcription and protein activation. In addition to highlighting OSMs as a multifunctional platform for a wide range of biomedical applications, current challenges and perspectives of OSMs in biophotonics are discussed.

777 citations