scispace - formally typeset
Search or ask a question
Author

Shuh Narumiya

Bio: Shuh Narumiya is an academic researcher from Kyoto University. The author has contributed to research in topics: Receptor & Prostaglandin E2 receptor. The author has an hindex of 137, co-authored 595 publications receiving 70183 citations. Previous affiliations of Shuh Narumiya include Japan Agency for Medical Research and Development & Astellas Pharma.


Papers
More filters
Journal ArticleDOI
30 Oct 1997-Nature
TL;DR: Pyridine derivative Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models, suggesting that compounds that inhibit this process might be useful therapeutically.
Abstract: Abnormal smooth-muscle contractility may be a major cause of disease states such as hypertension, and a smooth-muscle relaxant that modulates this process would be useful therapeutically. Smooth-muscle contraction is regulated by the cytosolic Ca2+ concentration and by the Ca2+ sensitivity of myofilaments: the former activates myosin light-chain kinase and the latter is achieved partly by inhibition of myosin phosphatase. The small GTPase Rho and its target, Rho-associated kinase, participate in this latter mechanism in vitro, but their participation has not been demonstrated in intact muscles. Here we show that a pyridine derivative, Y-27632, selectively inhibits smooth-muscle contraction by inhibiting Ca2+ sensitization. We identified the Y-27632 target as a Rho-associated protein kinase, p160ROCK. Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models. Our findings indicate that p160ROCK-mediated Ca2+ sensitization is involved in the pathophysiology of hypertension and suggest that compounds that inhibit this process might be useful therapeutically.

2,900 citations

Journal ArticleDOI
TL;DR: An overview of the current status of research on the prostanoid receptors is given and domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified.
Abstract: Prostanoids are the cyclooxygenase metabolites of arachidonic acid and include prostaglandin (PG) D2, PGE2, PGF2α, PGI2, and thromboxne A2. They are synthesized and released upon cell stimulation and act on cells in the vicinity of their synthesis to exert their actions. Receptors mediating the actions of prostanoids were recently identified and cloned. They are G protein-coupled receptors with seven transmembrane domains. There are eight types and subtypes of prostanoid receptors that are encoded by different genes but as a whole constitute a subfamily in the superfamily of the rhodopsin-type receptors. Each of the receptors was expressed in cultured cells, and its ligand-binding properties and signal transduction pathways were characterized. Moreover, domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified. Information also is accumulating as to the distribution of these receptors in the body. It is also becoming clear for some types of ...

2,371 citations

Journal ArticleDOI
TL;DR: Southern blot analyses and genomic cloning demonstrates the existence of related genes, raising the possibility that similar abnormalities in related genes may give rise to diseases similar to Machado-Joseph disease.
Abstract: We have identified a novel gene containing CAG repeats and mapped it to chromosome 14q32.1, the genetic locus for Machado-Joseph disease (MJD). In normal individuals the gene contains between 13 and 36 CAG repeats, whereas most of the clinically diagnosed patients and all of the affected members of a family with the clinical and pathological diagnosis of MJD show expansion of the repeat-number (from 68-79). Southern blot analyses and genomic cloning demonstrates the existence of related genes. These results raise the possibility that similar abnormalities in related genes may give rise to diseases similar to MJD.

1,704 citations

Journal ArticleDOI
06 Aug 1999-Science
TL;DR: Results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylated of cofilin by LIM- Kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
Abstract: The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid–induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632–sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.

1,620 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Abstract: The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.

6,036 citations

Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Abstract: The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.

5,969 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Abstract: Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

5,889 citations