scispace - formally typeset
Search or ask a question
Author

Shui Bao Xu

Bio: Shui Bao Xu is an academic researcher. The author has contributed to research in topics: Virus. The author has an hindex of 1, co-authored 1 publications receiving 594 citations.
Topics: Virus

Papers
More filters
Journal ArticleDOI
TL;DR: The clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19 were analyzed, providing further evidence to improve the management of patients during convalescence and showed that the CD4+ T lymphocyte count may help predict the duration of viral RNA detection in patients’ stools.
Abstract: Background: A patient's infectivity is determined by the presence of the virus in different body fluids, secretions, and excreta. The persistence and clearance of viral RNA from different specimens of patients with 2019 novel coronavirus disease (COVID-19) remain unclear. This study analyzed the clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19, providing further evidence to improve the management of patients during convalescence.

724 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic review and meta-analysis of published gastrointestinal symptoms and detection of virus in stool, and a analysis of data from a cohort of patients with COVID-19 in Hong Kong found that 17.6% of patientsWith CO VID-19 had gastrointestinal symptoms, and healthcare workers should exercise caution in collecting fecal samples or performing endoscopic procedures in patients with CoV-2—even during patient recovery.

1,267 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived.
Abstract: Summary Background Viral load kinetics and duration of viral shedding are important determinants for disease transmission. We aimed to characterise viral load dynamics, duration of viral RNA shedding, and viable virus shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various body fluids, and to compare SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) viral dynamics. Methods In this systematic review and meta-analysis, we searched databases, including MEDLINE, Embase, Europe PubMed Central, medRxiv, and bioRxiv, and the grey literature, for research articles published between Jan 1, 2003, and June 6, 2020. We included case series (with five or more participants), cohort studies, and randomised controlled trials that reported SARS-CoV-2, SARS-CoV, or MERS-CoV infection, and reported viral load kinetics, duration of viral shedding, or viable virus. Two authors independently extracted data from published studies, or contacted authors to request data, and assessed study quality and risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist tools. We calculated the mean duration of viral shedding and 95% CIs for every study included and applied the random-effects model to estimate a pooled effect size. We used a weighted meta-regression with an unrestricted maximum likelihood model to assess the effect of potential moderators on the pooled effect size. This study is registered with PROSPERO, CRD42020181914. Findings 79 studies (5340 individuals) on SARS-CoV-2, eight studies (1858 individuals) on SARS-CoV, and 11 studies (799 individuals) on MERS-CoV were included. Mean duration of SARS-CoV-2 RNA shedding was 17·0 days (95% CI 15·5–18·6; 43 studies, 3229 individuals) in upper respiratory tract, 14·6 days (9·3–20·0; seven studies, 260 individuals) in lower respiratory tract, 17·2 days (14·4–20·1; 13 studies, 586 individuals) in stool, and 16·6 days (3·6–29·7; two studies, 108 individuals) in serum samples. Maximum shedding duration was 83 days in the upper respiratory tract, 59 days in the lower respiratory tract, 126 days in stools, and 60 days in serum. Pooled mean SARS-CoV-2 shedding duration was positively associated with age (slope 0·304 [95% CI 0·115–0·493]; p=0·0016). No study detected live virus beyond day 9 of illness, despite persistently high viral loads, which were inferred from cycle threshold values. SARS-CoV-2 viral load in the upper respiratory tract appeared to peak in the first week of illness, whereas that of SARS-CoV peaked at days 10–14 and that of MERS-CoV peaked at days 7–10. Interpretation Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived. SARS-CoV-2 titres in the upper respiratory tract peak in the first week of illness. Early case finding and isolation, and public education on the spectrum of illness and period of infectiousness are key to the effective containment of SARS-CoV-2. Funding None.

1,061 citations

Journal ArticleDOI
TL;DR: The large proportion of asymptomatic children indicates the difficulty in identifying paediatric patients who do not have clear epidemiological information, leading to a dangerous situation in community-acquired infections.
Abstract: Summary Background Since December, 2019, an outbreak of coronavirus disease 2019 (COVID-19) has spread globally. Little is known about the epidemiological and clinical features of paediatric patients with COVID-19. Methods We retrospectively retrieved data for paediatric patients (aged 0–16 years) with confirmed COVID-19 from electronic medical records in three hospitals in Zhejiang, China. We recorded patients' epidemiological and clinical features. Findings From Jan 17 to March 1, 2020, 36 children (mean age 8·3 [SD 3·5] years) were identified to be infected with severe acute respiratory syndrome coronavirus 2. The route of transmission was by close contact with family members (32 [89%]) or a history of exposure to the epidemic area (12 [33%]); eight (22%) patients had both exposures. 19 (53%) patients had moderate clinical type with pneumonia; 17 (47%) had mild clinical type and either were asymptomatic (ten [28%]) or had acute upper respiratory symptoms (seven [19%]). Common symptoms on admission were fever (13 [36%]) and dry cough (seven [19%]). Of those with fever, four (11%) had a body temperature of 38·5°C or higher, and nine (25%) had a body temperature of 37·5–38·5°C. Typical abnormal laboratory findings were elevated creatine kinase MB (11 [31%]), decreased lymphocytes (11 [31%]), leucopenia (seven [19%]), and elevated procalcitonin (six [17%]). Besides radiographic presentations, variables that were associated significantly with severity of COVID-19 were decreased lymphocytes, elevated body temperature, and high levels of procalcitonin, D-dimer, and creatine kinase MB. All children received interferon alfa by aerosolisation twice a day, 14 (39%) received lopinavir–ritonavir syrup twice a day, and six (17%) needed oxygen inhalation. Mean time in hospital was 14 (SD 3) days. By Feb 28, 2020, all patients were cured. Interpretation Although all paediatric patients in our cohort had mild or moderate type of COVID-19, the large proportion of asymptomatic children indicates the difficulty in identifying paediatric patients who do not have clear epidemiological information, leading to a dangerous situation in community-acquired infections. Funding Ningbo Clinical Research Center for Children's Health and Diseases, Ningbo Reproductive Medicine Centre, and Key Scientific and Technological Innovation Projects of Wenzhou.

1,011 citations

Journal ArticleDOI
TL;DR: The majority of COVID-19 cases are symptomatic with a moderate CFR, and patients living in Wuhan, older patients, and those with medical comorbidities tend to have more severe clinical symptoms and higher CFR.

812 citations