scispace - formally typeset
Search or ask a question
Author

Shuit-Tong Lee

Bio: Shuit-Tong Lee is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Silicon & Nanowire. The author has an hindex of 138, co-authored 1121 publications receiving 77112 citations. Previous affiliations of Shuit-Tong Lee include University of British Columbia & Hong Kong University of Science and Technology.
Topics: Silicon, Nanowire, OLED, Electroluminescence, Diamond


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an organic photovoltaic device using starburst amine PCATA as the electron donor layer gave a quantum efficiency of up to 21.7% at short-circuit conditions, which is higher than those reported for UV-sensitive organic PV cells.
Abstract: Organic photovoltaic devices using starburst amine PCATA as the electron donor layer gave a quantum efficiency of up to 21.7% at short-circuit conditions, which is higher than those reported for UV-sensitive organic PV cells.

12 citations

Journal ArticleDOI
TL;DR: In this article, the size-dependent chemical reactivity of hydrogenated silicon clusters reacting with water has been investigated and a unique trend of decreasing reactivity with decreasing cluster size has been deduced from reaction energetics, frontier orbital analysis, and chemical reaction rates determined by the transition state theory in conjunction with ab initio calculations at Hartree-Fock and Moller-Plesset perturbation levels of theory.
Abstract: We show explicitly the size-dependent chemical reactivity of hydrogenated silicon clusters reacting with water. A unique trend of decreasing reactivity with decreasing cluster size has been deduced from reaction energetics, frontier orbital analysis, and chemical reaction rates determined by the transition state theory in conjunction with ab initio calculations at Hartree–Fock and Moller–Plesset perturbation levels of theory, for water reaction with both dihydride and trihydride silicon configurations. This study indicates the possibility of fabricating stable hydrogenated silicon structures by reducing their size to nanometers.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the molecular dynamics has been used to simulate the structures of Si nanoparticles (NPs) and nanowires (NWs) with free and hydrogenated surface, and the authors confirm the importance of surface in dominating the properties of NPs and NWs.

12 citations

Journal ArticleDOI
TL;DR: In this article, a simple scanning thermocouple technique for measuring the thermal conductivity (κ) of diamond thin films was presented, and the measured data were fitted into the solution obtained from solving the steady-state heat conduction equations which also took into account the heat loss from the sample.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of surface passivation, thickness of SiO2 shell, and Si/O ratio on the structures and properties of Si/SiO2 core/shell quantum dots were investigated.
Abstract: Si/SiO2 core/shell quantum dots (QDs) have been shown with wavelength-tunable photoluminescence in addition to their inert, nontoxic, abundant, low-cost, biocompatible advantages. Due to their big size, here, we apply density-functional tight-binding (DFTB) method to perform calculations to study their structures and properties. We systematically investigate the effects of surface passivation, thickness of SiO2 shell, and Si/O ratio on the structures and properties of Si/SiO2 core/shell quantum dots. We find that hydroxyl passivated Si/SiO2 core/shell quantum dots are able to stabilize the quantum dots compared with hydrogen passivated Si/SiO2 core/shell quantum dots. By using DFTB method, we are able to study Si/SiO2 core/shell quantum dots of big size (3 nm) and we find that, in Si/SiO2 core/shell quantum dots, there are competing effects between quantum confinement (blueshift) and oxidation (redshift) with the decrease of the size of Si core. The transition point is when Si/SiO2 ratio is around 1:1. The effect of the thickness of SiO2 on energy gap is not as significant as the effect of the size of the Si core. Our study provides theoretical basis for designing Si quantum dots with tunable photoluminescence.

12 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

6,104 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations