scispace - formally typeset
Search or ask a question
Author

Shuit-Tong Lee

Bio: Shuit-Tong Lee is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Silicon & Nanowire. The author has an hindex of 138, co-authored 1121 publications receiving 77112 citations. Previous affiliations of Shuit-Tong Lee include University of British Columbia & Hong Kong University of Science and Technology.
Topics: Silicon, Nanowire, OLED, Electroluminescence, Diamond


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, bias-assisted reactive ion etching was used to produce uniform, large-area cone arrays of diamond films, which can be applied to any structure of diamond film ranging from microcrystalline to nanocrystalline.
Abstract: A structuring method capable of producing uniform, large-area cone arrays of diamond films was developed. The technique employs bias-assisted reactive ion etching and is applicable to any structure of diamond films ranging from microcrystalline to nanocrystalline. Variation of the etching conditions enables control of the cone density, geometry, and height. Surface nanostructuring of cone arrays significantly improves the field emission properties of diamond films of all kinds. The turn on field is reduced to 6 and 10 V/μm for nanodiamond and microdiamond films, respectively, (compared to >25 V/μm for as deposited surfaces). Lower cone density yields better field electron emission (lower turn-on electrical field) due to the screening in high-density cone arrays. The field emission properties are determined by both the enhancement factor of the cone array and the emitting properties of the material. The field electron emission properties of nanodiamond arrays are better than cone arrays of single crystalli...

72 citations

Journal ArticleDOI
19 May 2010-ACS Nano
TL;DR: The totality of the observations suggests that nanomaterials can be described as a core-shell structure due to their large surface-to-volume ratio, and controlling the surface or shell in the core- shell model represents a universal way to tune the properties of nanostructures, such as via surface-transfer doping, and is crucial for the development of nanstructure-based devices.
Abstract: p-Type surface conductivity is a uniquely important property of hydrogen-terminated diamond surfaces. In this work, we report similar surface-dominated electrical properties in silicon nanowires (SiNWs). Significantly, we demonstrate tunable and reversible transition of p+−p−i−n−n+ conductance in nominally intrinsic SiNWs via changing surface conditions, in sharp contrast to the only p-type conduction observed on diamond surfaces. On the basis of Si band energies and the electrochemical potentials of the ambient (pH value)-determined adsorbed aqueous layer, we propose an electron-transfer-dominated surface doping model, which can satisfactorily explain both diamond and silicon surface conductivity. The totality of our observations suggests that nanomaterials can be described as a core−shell structure due to their large surface-to-volume ratio. Consequently, controlling the surface or shell in the core−shell model represents a universal way to tune the properties of nanostructures, such as via surface-tran...

71 citations

Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: External quantum efficiency spectra, capacitance-voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p-n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi.
Abstract: Silicon–organic solar cells based on conjugated polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on n-type silicon (n-Si) attract wide interest because of their potential for cost-effectiveness and high-efficiency. However, a lower barrier height (Φb) and a shallow built in potential (Vbi) of Schottky junction between n-Si and PEDOT:PSS hinders the power conversion efficiency (PCE) in comparison with those of traditional p–n junction. Here, a strong inversion layer was formed on n-Si surface by inserting a layer of 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), resulting in a quasi p–n junction. External quantum efficiency spectra, capacitance–voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p–n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi. The quasi p–n junction located on the front surface region of silicon substrates improved the short wavelen...

71 citations

Journal ArticleDOI
TL;DR: It was demonstrated that zeolite can be used as a pseudo-template to grow very fine and uniform silicon nanostructures via disproportionation reaction of SiO by thermal evaporation.
Abstract: It was demonstrated that zeolite can be used as a pseudo-template to grow very fine and uniform silicon nanostructures via disproportionation reaction of SiO by thermal evaporation. Three distinct types of composite nanowires and nanotubes of silicon and silica were grown on the surfaces of zeolite Y pellets. The first type is formed by an ultrafine crystalline silicon nanowire sheathed by an amorphous silica tube (a silicon nanowire inside a silica nanotube). The second type is formed by a crystalline silicon nanotube filled with amorphous silica (a silicon nanotube outside a silica nanowire). The third type is a biaxial silicon-silica nanowire structure with side-by-side growth of crystalline silicon and amorphous silica. These silicon nanostructures exhibit unusually intense photoluminescence (in comparison to ordinary silicon nanowires).

71 citations

Journal ArticleDOI
TL;DR: In this paper, single-crystal 9,10-diphenylanthracene (DPA) nanoribbons and nanorods with uniform sizes and shapes were synthesized via a simple surfactant-assisted self-assembly process.
Abstract: Single-crystal 9,10-diphenylanthracene (DPA) nanoribbons and nanorods with uniform sizes and shapes were synthesized via a simple surfactant-assisted self-assembly process. The shape of the as-prepared nanostructures can be readily controlled by varying the solubility of DPA in the preparation solution. A growth mechanism was proposed for the formation of different morphological structures. Crystal structure analysis demonstrated that the overlap between the two phenyl groups at the opposite positions of the anthracene backbone forms effective intermolecular linking for crystal growth, in good agreement with prediction from quantum mechanical calculations. Electronic and optical properties of the as-prepared nanostructures are investigated.

70 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

6,104 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations