scispace - formally typeset
Search or ask a question
Author

Shuit-Tong Lee

Bio: Shuit-Tong Lee is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Silicon & Nanowire. The author has an hindex of 138, co-authored 1121 publications receiving 77112 citations. Previous affiliations of Shuit-Tong Lee include University of British Columbia & Hong Kong University of Science and Technology.
Topics: Silicon, Nanowire, OLED, Electroluminescence, Diamond


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the growth of an ordered thin film of copper phthalocyanine (CuPc) on highly oriented pyrolytic graphite at high substrate temperatures was studied.
Abstract: The growth of an ordered thin film of copper phthalocyanine (CuPc) on highly oriented pyrolytic graphite at high substrate temperatures was studied. High-resolution electron energy loss spectroscopy investigation revealed that the CuPc molecules remained lying flat on the substrate throughout the growth from monolayer to multilayer. Scanning tunneling microscopy and X-ray diffraction measurements showed the CuPc thin film assumed a dense-packed structure in the horizontal direction and a face-to-face stacking mode in the surface normal direction. The totality of the results presented a clear view of the orderly growth process of CuPc molecules.

52 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: The precise control of multicomponent complex topological configurations integrating more than one compound or one crystal phase with high spatial and angular precision is extremely challenging due to the complexity as discussed by the authors.
Abstract: The precise control of multicomponent complex topological configurations integrating more than one compound or one crystal phase with high spatial and angular precision is extremely challenging due...

52 citations

Journal ArticleDOI
TL;DR: The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy in this paper, where nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods.
Abstract: Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C2 dimer growth (CH4 and H2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH4 in H2) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite.

52 citations

Journal ArticleDOI
TL;DR: In this article, a very low field emission was achieved from aligned and opened carbon nanotube arrays, achieving field emission current densities of 10 microamperes per square centimeter at applied fields of 0.6-1 V/mum.
Abstract: A very low-field emission was achieved from aligned and opened carbon nanotube arrays. Field emission current densities of 10 microamperes per square centimeter were observed at applied fields of 0.6-1 V/mum, and current densities of 10 mA/cm(2) have been realized at applied fields as low as 2-2.7 V/mum. These fields are more than 2 times lower than those previously obtained for carbon nanotubes, and also represent the lowest field ever reported for any field emitting arrays at the same current densities, indicating that carbon nanotubes are superior field emitters.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a review of various organic π-stacked structures has been presented, and the opportunities and challenges for utilizing and improving particular materials are discussed, as well as new insights into the theory, materials, and devices in the field of organic semiconductors.
Abstract: Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.

52 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

6,104 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations