scispace - formally typeset
Search or ask a question
Author

Shuiwang Ji

Bio: Shuiwang Ji is an academic researcher from Texas A&M University. The author has contributed to research in topics: Computer science & Deep learning. The author has an hindex of 45, co-authored 191 publications receiving 16742 citations. Previous affiliations of Shuiwang Ji include Beijing Jiaotong University & Washington State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a novel 3D CNN model for action recognition, which extracts features from both the spatial and the temporal dimensions by performing 3D convolutions, thereby capturing the motion information encoded in multiple adjacent frames.
Abstract: We consider the automated recognition of human actions in surveillance videos. Most current methods build classifiers based on complex handcrafted features computed from the raw inputs. Convolutional neural networks (CNNs) are a type of deep model that can act directly on the raw inputs. However, such models are currently limited to handling 2D inputs. In this paper, we develop a novel 3D CNN model for action recognition. This model extracts features from both the spatial and the temporal dimensions by performing 3D convolutions, thereby capturing the motion information encoded in multiple adjacent frames. The developed model generates multiple channels of information from the input frames, and the final feature representation combines information from all channels. To further boost the performance, we propose regularizing the outputs with high-level features and combining the predictions of a variety of different models. We apply the developed models to recognize human actions in the real-world environment of airport surveillance videos, and they achieve superior performance in comparison to baseline methods.

4,545 citations

Proceedings Article
21 Jun 2010
TL;DR: A novel 3D CNN model for action recognition that extracts features from both the spatial and the temporal dimensions by performing 3D convolutions, thereby capturing the motion information encoded in multiple adjacent frames.
Abstract: We consider the fully automated recognition of actions in uncontrolled environment. Most existing work relies on domain knowledge to construct complex handcrafted features from inputs. In addition, the environments are usually assumed to be controlled. Convolutional neural networks (CNNs) are a type of deep models that can act directly on the raw inputs, thus automating the process of feature construction. However, such models are currently limited to handle 2D inputs. In this paper, we develop a novel 3D CNN model for action recognition. This model extracts features from both spatial and temporal dimensions by performing 3D convolutions, thereby capturing the motion information encoded in multiple adjacent frames. The developed model generates multiple channels of information from the input frames, and the final feature representation is obtained by combining information from all channels. We apply the developed model to recognize human actions in real-world environment, and it achieves superior performance without relying on handcrafted features.

4,087 citations

Journal ArticleDOI
TL;DR: This paper proposes to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images, and compared the performance of the approach with that of the commonly used segmentation methods on a set of manually segmented isointENSE stage brain images.

739 citations

Posted Content
TL;DR: This paper proposes to accelerate the computation of the l2, 1-norm regularized regression model by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov's method---an optimal first-order black-box method for smooth conveX optimization.
Abstract: The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the l2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the l2,1-norm regularization is that it encourages multiple predictors to share similar sparsity patterns. However, the resulting optimization problem is challenging to solve due to the non-smoothness of the l2,1-norm regularization. In this paper, we propose to accelerate the computation by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov's method-an optimal first-order black-box method for smooth convex optimization. A key building block in solving the reformulations is the Euclidean projection. We show that the Euclidean projection for the first reformulation can be analytically computed, while the Euclidean projection for the second one can be computed in linear time. Empirical evaluations on several data sets verify the efficiency of the proposed algorithms.

630 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: In this paper, the heterotrait-monotrait ratio of correlations is used to assess discriminant validity in variance-based structural equation modeling. But it does not reliably detect the lack of validity in common research situations.
Abstract: Discriminant validity assessment has become a generally accepted prerequisite for analyzing relationships between latent variables. For variance-based structural equation modeling, such as partial least squares, the Fornell-Larcker criterion and the examination of cross-loadings are the dominant approaches for evaluating discriminant validity. By means of a simulation study, we show that these approaches do not reliably detect the lack of discriminant validity in common research situations. We therefore propose an alternative approach, based on the multitrait-multimethod matrix, to assess discriminant validity: the heterotrait-monotrait ratio of correlations. We demonstrate its superior performance by means of a Monte Carlo simulation study, in which we compare the new approach to the Fornell-Larcker criterion and the assessment of (partial) cross-loadings. Finally, we provide guidelines on how to handle discriminant validity issues in variance-based structural equation modeling.

12,855 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations