scispace - formally typeset
Search or ask a question
Author

Shumei Kato

Bio: Shumei Kato is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Medicine & Cancer. The author has an hindex of 27, co-authored 113 publications receiving 4071 citations. Previous affiliations of Shumei Kato include University of California, Berkeley & University of Texas MD Anderson Cancer Center.
Topics: Medicine, Cancer, Internal medicine, Oncology, KRAS

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Higher TMB predicts favorable outcome to PD-1/PD-L1 blockade across diverse cancers treated with various immunotherapies, and Benefit from dual checkpoint blockade did not show a similarly strong dependence on TMB.
Abstract: Immunotherapy induces durable responses in a subset of patients with cancer. High tumor mutational burden (TMB) may be a response biomarker for PD-1/PD-L1 blockade in tumors such as melanoma and non-small cell lung cancer (NSCLC). Our aim was to examine the relationship between TMB and outcome in diverse cancers treated with various immunotherapies. We reviewed data on 1,638 patients who had undergone comprehensive genomic profiling and had TMB assessment. Immunotherapy-treated patients (N = 151) were analyzed for response rate (RR), progression-free survival (PFS), and overall survival (OS). Higher TMB was independently associated with better outcome parameters (multivariable analysis). The RR for patients with high (≥20 mutations/mb) versus low to intermediate TMB was 22/38 (58%) versus 23/113 (20%; P = 0.0001); median PFS, 12.8 months vs. 3.3 months (P ≤ 0.0001); median OS, not reached versus 16.3 months (P = 0.0036). Results were similar when anti-PD-1/PD-L1 monotherapy was analyzed (N = 102 patients), with a linear correlation between higher TMB and favorable outcome parameters; the median TMB for responders versus nonresponders treated with anti-PD-1/PD-L1 monotherapy was 18.0 versus 5.0 mutations/mb (P < 0.0001). Interestingly, anti-CTLA4/anti-PD-1/PD-L1 combinations versus anti-PD-1/PD-L1 monotherapy was selected as a factor independent of TMB for predicting better RR (77% vs. 21%; P = 0.004) and PFS (P = 0.024). Higher TMB predicts favorable outcome to PD-1/PD-L1 blockade across diverse tumors. Benefit from dual checkpoint blockade did not show a similarly strong dependence on TMB. Mol Cancer Ther; 16(11); 2598-608. ©2017 AACR.

1,600 citations

Journal ArticleDOI
TL;DR: Genomic profiles may help to identify patients at risk for hyperprogression on immunotherapy, and significantly increased rate of tumor growth after single-agent checkpoint (PD-1/PD-L1) inhibitors.
Abstract: Purpose: Checkpoint inhibitors demonstrate salutary anticancer effects, including long-term remissions. PD-L1 expression/amplification, high mutational burden, and mismatch repair deficiency correlate with response. We have, however, observed a subset of patients who appear to be "hyperprogressors," with a greatly accelerated rate of tumor growth and clinical deterioration compared with pretherapy, which was also recently reported by Institut Gustave Roussy. The current study investigated potential genomic markers associated with "hyperprogression" after immunotherapy.Experimental Design: Consecutive stage IV cancer patients who received immunotherapies (CTLA-4, PD-1/PD-L1 inhibitors or other [investigational] agents) and had their tumor evaluated by next-generation sequencing were analyzed (N = 155). We defined hyperprogression as time-to-treatment failure (TTF) 50% increase in tumor burden compared with preimmunotherapy imaging, and >2-fold increase in progression pace.Results: Amongst 155 patients, TTF <2 months was seen in all six individuals with MDM2/MDM4 amplification. After anti-PD1/PDL1 monotherapy, four of these patients showed remarkable increases in existing tumor size (55% to 258%), new large masses, and significantly accelerated progression pace (2.3-, 7.1-, 7.2- and 42.3-fold compared with the 2 months before immunotherapy). In multivariate analysis, MDM2/MDM4 and EGFR alterations correlated with TTF <2 months. Two of 10 patients with EGFR alterations were also hyperprogressors (53.6% and 125% increase in tumor size; 35.7- and 41.7-fold increase).Conclusions: Some patients with MDM2 family amplification or EGFR aberrations had poor clinical outcome and significantly increased rate of tumor growth after single-agent checkpoint (PD-1/PD-L1) inhibitors. Genomic profiles may help to identify patients at risk for hyperprogression on immunotherapy. Further investigation is urgently needed. Clin Cancer Res; 23(15); 4242-50. ©2017 AACR.

644 citations

Journal ArticleDOI
TL;DR: Targeting of a larger fraction of identified molecular alterations, yielding a higher ‘matching score’, was correlated with significantly improved disease control rates, as well as longer progression-free and overall survival rates, compared to targeting of fewer somatic alterations.
Abstract: Cancer treatments have evolved from indiscriminate cytotoxic agents to selective genome- and immune-targeted drugs that have transformed the outcomes of some malignancies1. Tumor complexity and heterogeneity suggest that the 'precision medicine' paradigm of cancer therapy requires treatment to be personalized to the individual patient2-6. To date, precision oncology trials have been based on molecular matching with predetermined monotherapies7-14. Several of these trials have been hindered by very low matching rates, often in the 5-10% range15, and low response rates. Low matching rates may be due to the use of limited gene panels, restrictive molecular matching algorithms, lack of drug availability, or the deterioration and death of end-stage patients before therapy can be implemented. We hypothesized that personalized treatment with combination therapies would improve outcomes in patients with refractory malignancies. As a first test of this concept, we implemented a cross-institutional prospective study (I-PREDICT, NCT02534675 ) that used tumor DNA sequencing and timely recommendations for individualized treatment with combination therapies. We found that administration of customized multidrug regimens was feasible, with 49% of consented patients receiving personalized treatment. Targeting of a larger fraction of identified molecular alterations, yielding a higher 'matching score', was correlated with significantly improved disease control rates, as well as longer progression-free and overall survival rates, compared to targeting of fewer somatic alterations. Our findings suggest that the current clinical trial paradigm for precision oncology, which pairs one driver mutation with one drug, may be optimized by treating molecularly complex and heterogeneous cancers with combinations of customized agents.

391 citations

Journal ArticleDOI
TL;DR: It is revealed that integrin αvβ3 serves as a marker of breast, lung and pancreatic carcinomas with stem-like properties that are highly resistant to receptor tyrosine kinase inhibitors such as erlotinib.
Abstract: Tumour cells, with stem-like properties, are highly aggressive and often show drug resistance. Here, we reveal that integrin α(v)β₃ serves as a marker of breast, lung and pancreatic carcinomas with stem-like properties that are highly resistant to receptor tyrosine kinase inhibitors such as erlotinib. This was observed in vitro and in mice bearing patient-derived tumour xenografts or in clinical specimens from lung cancer patients who had progressed on erlotinib. Mechanistically, α(v)β₃, in the unliganded state, recruits KRAS and RalB to the tumour cell plasma membrane, leading to the activation of TBK1 and NF-κB. In fact, α(v)β₃ expression and the resulting KRAS-RalB-NF-κB pathway were both necessary and sufficient for tumour initiation, anchorage independence, self-renewal and erlotinib resistance. Pharmacological targeting of this pathway with bortezomib reversed both tumour stemness and erlotinib resistance. These findings not only identify α(v)β₃ as a marker/driver of carcinoma stemness but also reveal a therapeutic strategy to sensitize such tumours to RTK inhibition.

316 citations

Journal ArticleDOI
TL;DR: Initially reported in advanced melanoma patients, pseudoprogression occurs when tumor index lesions regress after initial progression, supporting the concept of treating some patients beyond progression, and the classic RECIST remains a reasonable and meaningful method to assess response to immunotherapy in the clinic.

302 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

20 Sep 2013
TL;DR: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Abstract: Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

2,380 citations