scispace - formally typeset
Search or ask a question
Author

Shun-Xing Liang

Other affiliations: University of Duisburg-Essen
Bio: Shun-Xing Liang is an academic researcher from Edith Cowan University. The author has contributed to research in topics: Amorphous metal & Materials science. The author has an hindex of 16, co-authored 36 publications receiving 899 citations. Previous affiliations of Shun-Xing Liang include University of Duisburg-Essen.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the catalytic properties of metal glasses with various atomic components and their properties on catalytic reactivity is presented, including structural relaxation, crystallization, and rejuvenation, electronic structure, atomic configuration, thermophysical property, atomic composition, surface roughness, residual stress, and porosity by dealloying.

199 citations

Journal ArticleDOI
TL;DR: It is reported that the excellent catalytic behavior in Fe-based MGs goes through a detrimental effect with the partial crystallization, but receives a compelling rejuvenation in the full crystallization.
Abstract: Metallic glasses (MGs) with the metastable nature and random atomic packing structure have attracted large attention in the catalytic family due to their superior catalytic performance. In contrast, their crystalline counterparts are restricted by the highly ordered packing structure, fewer surface active sites, and crystallographic defects for catalytic activity. The uncertainty of the different catalytic mechanisms and the intrinsic characteristics correlated to MGs and their crystalline counterparts become a major impediment to promote their catalytic efficiencies and widespread applications. Herein, it is reported that the excellent catalytic behavior in Fe-based MGs goes through a detrimental effect with the partial crystallization, but receives a compelling rejuvenation in the full crystallization. Further investigation reveals that multiphase intermetallics with electric potential differences in fully crystallized alloys facilitate the formation of galvanic cells. More importantly, extensively reduced grain boundaries due to grain growth greatly weaken electron trapping and promote inner electron transportation. The relatively homogenous grain-boundary corrosion in the intermetallics contributes to well-separated phases after reaction, leading to refreshment of the surface active sites, thereby quickly activating hydrogen peroxide and rapidly degrading organic pollutants. The exploration of catalytic mechanisms in the crystalline counterparts of MGs provides significant insights into revolutionize novel catalysts.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a Ti-35Nb alloy was manufactured using selective laser melting (SLM) from elemental mixed powder to study the microstructure, mechanical behavior, and corrosion properties of the resultant parts.
Abstract: The availability of alloyed powder feedstock and chemical inhomogeneity, which often occur when using elemental mixed powder, have been long-term concerns of selective laser melting (SLM) of metallic materials. In this work, a Ti–35Nb alloy (in wt.%) was manufactured using SLM from elemental mixed powder to study the microstructure, mechanical behavior, and corrosion properties of the resultant parts. Microstructural characterizations show that the SLM-produced Ti–35Nb is composed of fine near β phase dendrites and undissolved Nb particles, which produces in a relatively low Young's modulus (84.7 ± 1.2 GPa). The chemical homogeneity and microstructural homogeneity are improved by heat treatment, resulting in a more homogeneous microstructure and smaller Nb particles. The undissolved large Nb particles play an important role in the overall performance of the SLM-produced materials, because the boundaries of undissolved large Nb particles in the as-SLMed part act as initiation sites for slip bands. The compressive fracture mechanism illustrates the propagation, arrest and merge of shear bands, thereby revealing the effects on the yield strength and plasticity. The electrochemical experiments show the stable corrosion resistance of as-SLMed sample and the improved corrosion resistance of the heat-treated counterparts. This work sheds insight into the SLM of Ti–Nb powder mixtures for biomedical applications. In particular, the relatively low cost and easy manufacture of elemental powder as feedstock offer significant advantages to the additive manufacturing industry.

112 citations

Journal ArticleDOI
TL;DR: An overview of conventional manufacturing methods and novel additive manufacturing technologies for metallic lattice structures is presented in this article, where the design, optimization, a variety of properties, and applications of metallic-lattice structures produced by additive manufacturing are elaborated.
Abstract: Lattice structures, which are also known as architected cellular structures, have been applied in various industrial sectors, owing to their fascinated performances, such as low elastic modulus, high stiffness-to-weight ratio, low thermal expansion coefficient, and large specific surface area. The lattice structures fabricated by conventional manufacturing technologies always involve complicated process control, additional assembly steps, or other uncontrollable factors. Furthermore, limited types of unit cells can be used to construct lattice structures when using conventional processes. Fortunately, additive manufacturing technology, based on a layer-by-layer process from computer-aided design models, demonstrates the unique capability and flexibility and provides an ideal platform in manufacturing complex components like lattice structures, resulting in an effective reduction in the processing time to actual application and minimum of material waste. Therefore, additive manufacturing relieves the constraint of structure design and provides accurate fabrication for lattice structures with good quality. This work systematically presents an overview of conventional manufacturing methods and novel additive manufacturing technologies for metallic lattice structures. Afterward, the design, optimization, a variety of properties, and applications of metallic lattice structures produced by additive manufacturing are elaborated. By summarizing state-of-the-art progress of the additively manufactured metallic lattice structures, limitations and future perspectives are also discussed.

112 citations

Journal ArticleDOI
TL;DR: In this article, an Fe78Si9B13 glassy ribbon manufactured by melt-spinning method was applied for the first time to compare its activation behavior on three peroxides, including hydrogen peroxide (H2O2), persulfate (PS) and peroxymonosulfate(PMS).
Abstract: Metallic glasses with long-range disordered atomic structure have recently been attracted a great deal of research attention in catalytic field. Compared to crystalline materials, the metallic glasses present many advanced catalytic properties, yet the catalytic mechanism is not sufficiently understood. In this work, an Fe78Si9B13 glassy ribbon manufactured by melt-spinning method was applied for the first time to compare its activation behavior on three peroxides, including hydrogen peroxide (H2O2), persulfate (PS) and peroxymonosulfate (PMS). It was shown that Fe78Si9B13 metallic glass had exceptionally high capability for activating these three common peroxides to produce reactive radicals ( OH and/or SO4•−). The dominant species of H2O2 in this work was demonstrated as hydroxyl radical ( OH) while the PS and PMS activation mainly generated sulfate radical (SO4•−). The order of predominant radical generation rate by Fe78Si9B13 activation under UV−vis irradiation was PS > H2O2 > PMS. The relative contribution of sulfate radical (SO4•−) in PS activation was 78% compared to 61% in PMS. All the peroxides activated by Fe78Si9B13 metallic glass presented a radical generation rate at least ∼2 times higher than other iron-containing materials. Crystal violet (CV) dye was used to investigate the catalytic performance of Fe78Si9B13 metallic glass for peroxides, which showed an ultrafast dye degradation rate with completely color removal within 15 min. The radical evolution mechanisms for H2O2, PS and PMS activation were also investigated. The change in surface morphology of ribbon after 5th run reused indicated that the inclusions of Si leading to formation of SiO2 layer played an important role in the surface stability of ribbons.

106 citations


Cited by
More filters
01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date research progresses of iron-mediated activation of persulfate and peroxymonosulfate mediated by these iron-based species in both homogeneous and heterogeneous ways are summarized and discussed.

491 citations

Journal ArticleDOI
28 May 2021-Science
TL;DR: In this article, a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) is proposed to cope with the extensive challenges of laser-based additive manufacturing.
Abstract: BACKGROUND Metallic components are the cornerstone of modern industries such as aviation, aerospace, automobile manufacturing, and energy production. The stringent requirements for high-performance metallic components impede the optimization of materials selection and manufacturing. Laser-based additive manufacturing (AM) is a key strategic technology for technological innovation and industrial sustainability. As the number of applications increases, so do the scientific and technological challenges. Because laser AM has domain-by-domain (e.g., point-by-point, line-by-line, and layer-by-layer) localized forming characteristics, the requisite for printing process and performance control encompasses more than six orders of magnitude, from the microstructure (nanometer- to micrometer-scale) to macroscale structure and performance of components (millimeter- to meter-scale). The traditional route of laser-metal AM follows a typical “series mode” from design to build, resulting in a cumbersome trial-and-error methodology that creates challenges for obtaining high-performance goals. ADVANCES We propose a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) to cope with the extensive challenges of AM. We define MSPI-AM as a one-step AM production of an integral metallic component by integrating multimaterial layout and innovative structures, with an aim to proactively achieve the designed high performance and multifunctionality. Driven by the performance or function to be realized, the MSPI-AM methodology enables the design of multiple materials, new structures, and corresponding printing processes in parallel and emphasizes their mutual compatibility, providing a systematic solution to the existing challenges for laser-metal AM. MSPI-AM is defined by two methodological ideas: “the right materials printed in the right positions” and “unique structures printed for unique functions.” The increasingly creative methods for engineering both micro- and macrostructures within single printed components have led to the use of AM to produce more complicated structures with multimaterials. It is now feasible to design and print multimaterial components with spatially varying microstructures and properties (e.g., nanocomposites, in situ composites, and gradient materials), further enabling the integration of functional structures with electronics within the volume of a laser-printed monolithic part. These complicated structures (e.g., integral topology optimization structures, biomimetic structures learned from nature, and multiscale hierarchical lattice or cellular structures) have led to breakthroughs in both mechanical performance and physical/chemical functionality. Proactive realization of high performance and multifunctionality requires cross-scale coordination mechanisms (i.e., from the nano/microscale to the macroscale). OUTLOOK Our MSPI-AM continues to develop into a practical methodology that contributes to the high performance and multifunctionality goals of AM. Many opportunities exist to enhance MSPI-AM. MSPI-AM relies on a more digitized material and structure development and printing, which could be accomplished by considering different paradigms for AM materials discovery with the Materials Genome Initiative, standardization of formats for digitizing materials and structures to accelerate data aggregation, and a systematic printability database to enhance autonomous decision-making of printers. MSPI-oriented AM becomes more intelligent in processes and production, with the integration of intelligent detection, sensing and monitoring, big-data statistics and analytics, machine learning, and digital twins. MSPI-AM further calls for more hybrid approaches to yield the final high-performance/multifunctional achievements, with more versatile materials selection and more comprehensive integration of virtual manufacturing and real production to navigate more complex printing. We hope that MSPI-AM can become a key strategy for the sustainable development of AM technologies. Download high-res image Open in new tab Download Powerpoint Material-structure-performance integrated additive manufacturing (MSPI-AM). Versatile designed materials and innovative structures are simultaneously printed within an integral metallic component to yield high performance and multifunctionality, integrating in parallel the core elements of material, structure, process, and performance and a large number of related coupling elements and future potential elements to enhance the multifunctionality of printed components and the maturity and sustainability of laser AM technologies.

386 citations

Journal ArticleDOI
TL;DR: The results showed that CUS-MIL-100(Fe) could effectively degrade SMT, with almost 100% removal efficiency within 180 min, and the enhanced catalytic activity can be ascribed to the incorporation of FeII and FeIII CUSs (coordinatively unsaturated metal sites), the large specific surface area, as well as the formation of mesopores.
Abstract: A novel Fenton-like catalyst, metal organic framework MIL-100(Fe) with FeII/FeIII mixed-valence coordinatively unsaturated iron center (CUS-MIL-100(Fe)), was synthesized, characterized, and used for the degradation of sulfamethazine (SMT). The catalytic performance of CUS-MIL-100(Fe) was investigated on the basis of various parameters, including initial pH, H2O2 concentration, catalyst dosage, and initial SMT concentration. The results showed that CUS-MIL-100(Fe) could effectively degrade SMT, with almost 100% removal efficiency within 180 min (52.4% mineralization efficiency), under the reaction conditions of pH 4.0, 20 mg L–1 SMT, 6 mM H2O2, and 0.5 g L–1 catalyst. Moreover, CUS-MIL-100(Fe) displayed a higher catalytic activity than that of MIL-100(Fe) for SMT degradation. Combined with the physical–chemical characterization, the enhanced catalytic activity can be ascribed to the incorporation of FeII and FeIII CUSs (coordinatively unsaturated metal sites), the large specific surface area, as well as th...

375 citations