scispace - formally typeset
Search or ask a question
Author

Shunbun Kita

Bio: Shunbun Kita is an academic researcher from University of Tokyo. The author has contributed to research in topics: Medicine & Adiponectin. The author has an hindex of 6, co-authored 6 publications receiving 8337 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that phosphorylation and activation of the 5′-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full- lengths Ad in the liver, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK.
Abstract: Adiponectin (Ad) is a hormone secreted by adipocytes that regulates energy homeostasis and glucose and lipid metabolism. However, the signaling pathways that mediate the metabolic effects of Ad remain poorly identified. Here we show that phosphorylation and activation of the 5'-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full-length Ad in the liver. In parallel with its activation of AMPK, Ad stimulates phosphorylation of acetyl coenzyme A carboxylase (ACC), fatty-acid oxidation, glucose uptake and lactate production in myocytes, phosphorylation of ACC and reduction of molecules involved in gluconeogenesis in the liver, and reduction of glucose levels in vivo. Blocking AMPK activation by dominant-negative mutant inhibits each of these effects, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK. Our data may provide a novel paradigm that an adipocyte-derived antidiabetic hormone, Ad, activates AMPK, thereby directly regulating glucose metabolism and insulin sensitivity in vitro and in vivo.

4,298 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: The cloning of complementary DNAs encoding adiponectin receptors 1 and 2 by expression cloning supports the conclusion that they serve as receptors for globular and full-length adiponECTin, and that they mediate increased AMP kinase and PPAR-α ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectionin.
Abstract: Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.

3,013 citations

Journal ArticleDOI
TL;DR: It is demonstrated that simple SDS-PAGE under non-reducing and non-heat-denaturing conditions clearly separates multimer species of adiponectin.

1,001 citations

Journal ArticleDOI
TL;DR: Data indicate that the cleavage of adiponectin by leukocyte elastase secreted from activated monocytes and/or neutrophils could be a candidate for the mechanism of the generation of the globular fragment of adip onectin.
Abstract: Previous studies revealed that carboxyl-terminal fragment containing the globular domain of adiponectin exists in human plasma. Although it is proposed that the globular fragment is generated by proteolytic cleavage, the place and responsible enzyme of the cleavage are still unclear. In this study, we evaluated the activity to cleave adiponectin in culture medium of several cell lines in vitro. Adiponectin cleavage into several carboxyl-terminal fragments containing the globular domain was observed in the medium of phorbol 12-myristate 13-acetate-stimulated monocytic cell lines THP-1 and U937. The molecular masses of the major products were 25, 20, and 18 kDa. The cleavage was thought to be mediated by leukocyte elastase (also known as neutrophil elastase) based on the following observations. First, the cleavage was inhibited by serine-protease inhibitors [phenylmethylsulfonylfluoride, Pefabloc SC (Roche Diagnostics, Basel, Switzerland) and aprotinin] and by the leukocyte elastase-specific peptide inhibitor MeOSuc-AAPV-CMK. Second, no activity was detected after THP-1 cells had fully differentiated into macrophages. Third, purified leukocyte elastase cleaved adiponectin with the same cleavage pattern as THP-1 cells. Finally, leukocyte elastase secreted by activated neutrophils cleaved adiponectin into the globular fragments. Amino-terminal sequence analysis revealed that cleavage sites of adiponectin by purified leukocyte elastase were between 38Thr and 39Cys, 40Ala and 41Gly, 44Ala and 45Gly, 91Ala and 92Glu, and 110Ala and 111Ala (the numbering of the positions of the amino acids starts at the signal sequence), suggesting that the cleavage occurs in the collagenous domain. These data indicate that the cleavage of adiponectin by leukocyte elastase secreted from activated monocytes and/or neutrophils could be a candidate for the mechanism of the generation of the globular fragment of adiponectin.

322 citations

Journal ArticleDOI
01 Nov 2004-Diabetes
TL;DR: It is demonstrated that PPAR-gamma protects islets from lipotoxicity by regulating TG partitioning among tissues and that a PPAR -gamma agonist can restore impaired insulin secretion under conditions of islet fat accumulation.
Abstract: Heterozygous peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-deficient (PPARgamma(+/-)) mice were protected from high-fat diet-induced insulin resistance. To determine the impact of systemic reduction of PPAR-gamma activity on beta-cell function, we investigated insulin secretion in PPARgamma(+/-) mice on a high-fat diet. Glucose-induced insulin secretion in PPARgamma(+/-) mice was impaired in vitro. The tissue triglyceride (TG) content of the white adipose tissue, skeletal muscle, and liver was decreased in PPARgamma(+/-) mice, but it was unexpectedly increased in the islets, and the increased TG content in the islets was associated with decreased glucose oxidation. Administration of a PPAR-gamma agonist, pioglitazone, reduced the islet TG content in PPARgamma(+/-) mice on a high-fat diet and ameliorated the impaired insulin secretion in vitro. Our results demonstrate that PPAR-gamma protects islets from lipotoxicity by regulating TG partitioning among tissues and that a PPAR-gamma agonist can restore impaired insulin secretion under conditions of islet fat accumulation.

87 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the endocrine functions of adipose tissue can be found in this paper, where the authors highlight the adverse metabolic consequences of both adipose excess and deficiency, and propose a more rational therapy for these increasingly prevalent disorders.
Abstract: Adipose tissue is a complex, essential, and highly active metabolic and endocrine organ. Besides adipocytes, adipose tissue contains connective tissue matrix, nerve tissue, stromovascular cells, and immune cells. Together these components function as an integrated unit. Adipose tissue not only responds to afferent signals from traditional hormone systems and the central nervous system but also expresses and secretes factors with important endocrine functions. These factors include leptin, other cytokines, adiponectin, complement components, plasminogen activator inhibitor-1, proteins of the renin-angiotensin system, and resistin. Adipose tissue is also a major site for metabolism of sex steroids and glucocorticoids. The important endocrine function of adipose tissue is emphasized by the adverse metabolic consequences of both adipose tissue excess and deficiency. A better understanding of the endocrine function of adipose tissue will likely lead to more rational therapy for these increasingly prevalent disorders. This review presents an overview of the endocrine functions of adipose tissue.

5,484 citations

Journal ArticleDOI
TL;DR: The role of adipokines in inflammatory responses is focused on and their potential as regulators of metabolic function is discussed.
Abstract: The worldwide epidemic of obesity has brought considerable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.

3,528 citations

Journal ArticleDOI
TL;DR: These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity.

3,174 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: The cloning of complementary DNAs encoding adiponectin receptors 1 and 2 by expression cloning supports the conclusion that they serve as receptors for globular and full-length adiponECTin, and that they mediate increased AMP kinase and PPAR-α ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectionin.
Abstract: Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.

3,013 citations

Journal ArticleDOI
TL;DR: Several adipocytokines have a central role in the regulation of insulin resistance, as well as many aspects of inflammation and immunity, and understanding this rapidly growing family of mainly adipocyte-derived mediators might be of importance in the development of new therapies for obesity-associated diseases.
Abstract: There has been much effort recently to define the role of adipocytokines, which are soluble mediators derived mainly from adipocytes (fat cells), in the interaction between adipose tissue, inflammation and immunity. The adipocytokines adiponectin and leptin have emerged as the most abundant adipocyte products, thereby redefining adipose tissue as a key component not only of the endocrine system, but also of the immune system. Indeed, as we discuss here, several adipocytokines have a central role in the regulation of insulin resistance, as well as many aspects of inflammation and immunity. Other adipocytokines, such as visfatin, have only recently been identified. Understanding this rapidly growing family of mainly adipocyte-derived mediators might be of importance in the development of new therapies for obesity-associated diseases.

2,855 citations