scispace - formally typeset
Search or ask a question
Author

Shuping Dang

Bio: Shuping Dang is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Orthogonal frequency-division multiplexing & Relay. The author has an hindex of 19, co-authored 112 publications receiving 1677 citations. Previous affiliations of Shuping Dang include University of Oxford & University of Manchester.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
24 Jan 2020
TL;DR: It is suggested that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric and high security, secrecy and privacy are its key features.
Abstract: The standardization of fifth generation (5G) communications has been completed, and the 5G network should be commercially launched in 2020. As a result, the visioning and planning of 6G communications has begun, with an aim to provide communication services for the future demands of the 2030s. Here, we provide a vision for 6G that could serve as a research guide in the post-5G era. We suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric. Thus, high security, secrecy and privacy should be key features of 6G and should be given particular attention by the wireless research community. To support this vision, we provide a systematic framework in which potential application scenarios of 6G are anticipated and subdivided. We subsequently define key potential features of 6G and discuss the required communication technologies. We also explore the issues beyond communication technologies that could hamper research and deployment of 6G. This Perspective provides a vision for sixth generation (6G) communications in which human-centric mobile communications are considered the most important application, and high security, secrecy and privacy are its key features.

663 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a vision for 6G that could serve a research guide in the post-5G era and suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric.
Abstract: The standardization of fifth generation (5G) communications has been completed, and the 5G network should be commercially launched in 2020. As a result, the visioning and planning of sixth generation (6G) communications has begun, with an aim to provide communication services for the future demands of the 2030s. Here we provide a vision for 6G that could serve a research guide in the post-5G era. We suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric. Thus, high security, secrecy, and privacy should be key features of 6G and should be given particular attention by the wireless research community. To support this vision, we provide a systematic framework in which potential application scenarios of 6G are anticipated and subdivided. We subsequently define key potential features of 6G and discuss the required communication technologies. We also explore the issues beyond communication technologies that could hamper research and deployment of 6G.

496 citations

Journal ArticleDOI
TL;DR: This paper proposes a model that not only takes advantage of various resources on the demand side, such as electric vehicles, demand response, and distributed generation, but also reflects the effects of CET on generation schedule.
Abstract: With the development of smart grid, demand-side resources (DSR) will play an increasingly important role in the power balance of supply and demand. In addition, the requirement of a low-carbon smart grid means some policy backgrounds, such as carbon emissions trading (CET), should not be ignored. Under these circumstances, it is a good idea to construct a novel unit commitment (UC) model. This paper proposes a model that not only takes advantage of various resources on the demand side, such as electric vehicles, demand response, and distributed generation, but also reflects the effects of CET on generation schedule. Then, an improved particle swarm optimization (IPSO) algorithm is applied to solve the problem. In numerical studies, we analyze the impacts of DSR and CET on the results of UC, respectively. In addition, two meaningful experiments are conducted to study the approaches to allocate emission quotas and the effects of price transmission mechanism.

123 citations

Journal ArticleDOI
TL;DR: A novel scheme termed layered orthogonal frequency division multiplexing with index modulation (L-OFDM-IM) to increase the spectral efficiency (SE) of OF DM-IM systems is proposed and results show that L-OFdm-IM outperforms the conventional OFDM- IM scheme.
Abstract: In this paper, we propose a novel scheme termed layered orthogonal frequency division multiplexing with index modulation (L-OFDM-IM) to increase the spectral efficiency (SE) of OFDM-IM systems. In L-OFDM-IM, all subcarriers are first divided into multiple layers, each determining the active subcarriers and their modulated symbols. The index modulation (IM) bits are carried on the indices of the active subcarriers of all layers, which are overlapped and distinguishable with different signal constellations so that the number of the IM bits is larger than that in traditional OFDM-IM. A low-complexity detection is proposed to alleviate the high burden of the optimal maximum-likelihood detection at the receiver side. A closed-form upper bound on the bit error rate, the achievable rate, and diversity order are derived to characterize the performance of L-OFDM-IM. To enhance the diversity performance of L-OFDM-IM, we further propose coordinate interleaving L-OFDM-IM (CI-L-OFDM-IM), which interleaves the real and imaginary parts of the modulated symbols over two different subchannels. Computer simulations verify the theoretical analysis, and results show that L-OFDM-IM outperforms the conventional OFDM-IM scheme. Moreover, it is also confirmed that CI-L-OFDM-IM obtains an additional diversity order in comparison with L-OFDM-IM.

95 citations

Journal ArticleDOI
TL;DR: The SAGIN is viewed from the perspective of cooperative communications and relay networking technologies are introduced to model and construct the framework of SAGIn, a cooperative relay network in which high-altitude platforms and terrestrial base stations serve as intermediates relaying signals between end device and satellite.
Abstract: By incorporating the merits of satellite, aerial, and terrestrial communications, the space-air-ground integrated network (SAGIN) emerges in recent years as a promising solution to support seamless, high-rate, and reliable transmission with an extremely larger coverage than a classic terrestrial network. In essence, SAGIN is a cooperative relay network, in which high-altitude platforms (HAPs) and terrestrial base stations (BSs) serve as intermediates relaying signals between end device and satellite. In this article, we thereby view the SAGIN from the perspective of cooperative communications and introduce relay networking technologies to model and construct the framework of SAGIN. Meanwhile, we take the realistic propagation environment, HAP mobility and mathematical tractability into account and reconstruct the cooperative channel models for SAGIN, including the space-air, space-ground and air-ground links. Based on the constructed framework of SAGIN, we analyze the outage performance and approximate the outage probability as well as asymptotic outage probability in closed form. Numerical results generated by computer simulations verify our analysis and provide insight into the applicability of SAGIN. Although the relaying scenarios considered in this work are simplistic, the good tractability and expandability of the constructed framework provide a solid foundation for further research of advanced systems with complex configurations.

69 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

01 Jan 2016

1,633 citations

Journal ArticleDOI
TL;DR: There are two kinds of tutorial articles: those that provide a primer on an established topic and those that let us in on the ground floor of something of emerging importance.
Abstract: There are two kinds of tutorial articles: those that provide a primer on an established topic and those that let us in on the ground floor of something of emerging importance. The first type of tutorial can have a noted expert who has been gracious (and brave) enough to write a field guide about a particular topic. The other sort of tutorial typically involves researchers who have each been laboring on a topic for some years. Both sorts of tutorial articles are very much desired. But we, as an editorial board for both Systems and Transactions, know that there has been no logical place for them in the AESS until this series was started several years ago. With these tutorials, we hope to continue to give them a home, a welcome, and provide a service to our membership. We do not intend to publish tutorials on a regular basis, but we hope to deliver them once or twice per year. We need and welcome good, useful tutorial articles (both kinds) in relevant AESS areas. If you, the reader, can offer a topic of interest and an author to write about it, please contact us. Self-nominations are welcome, and even more ideal is a suggestion of an article that the editor(s) can solicit. All articles will be reviewed in detail. Criteria on which they will be judged include their clarity of presentation, relevance, and likely audience, and, of course, their correctness and scientific merit. As to the mathematical level, the articles in this issue are a good guide: in each case the author has striven to explain complicated topics in simple-well, tutorial-terms. There should be no (or very little) novel material: the home for archival science is the Transactions Magazine, and submissions that need to be properly peer reviewed would be rerouted there. Likewise, articles that are interesting and descriptive, but lack significant tutorial content, ought more properly be submitted to the Systems Magazine.

955 citations

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations