scispace - formally typeset
Search or ask a question
Author

Shuxiang Dong

Bio: Shuxiang Dong is an academic researcher from Peking University. The author has contributed to research in topics: Piezoelectricity & Ultrasonic motor. The author has an hindex of 48, co-authored 214 publications receiving 11280 citations. Previous affiliations of Shuxiang Dong include Shenzhen University & Shanghai University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of mostly recent activities can be found, with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972.
Abstract: Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. A...

3,288 citations

Journal ArticleDOI
Junyi Zhai1, Zengping Xing1, Shuxiang Dong1, Jiefang Li1, Dwight Viehland1 
TL;DR: A brief history of giant magnetoelectric (ME) laminates can be found in this article, which discusses some of the important advancements in material couples, laminate configurations, and operational modes that have allowed for dramatic enhancements in the ME voltage and charge coefficients.
Abstract: Since the turn of the millennium, giant magnetoelectric (ME) effects have been found in laminated composites of piezoelectric and magnetostrictive layers. Compared with ME single phase and two-phase particulate composites, laminated composites have much higher ME coefficients and are also readily fabricated. Here, we will overview the brief history of ME laminates, discussing some of the important advancements in material couples, laminate configurations, and operational modes that have allowed for dramatic enhancements in the ME voltage and charge coefficients.

394 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the unleashing of the potential of the (2-1) connectivity configuration: a piezofiber layer laminated between two high-permeability magnetostrictive FeBSiC alloy ones has near-ideal ME coupling.
Abstract: Theoretically, the two-phase laminated configurations should have even much higher magnetoelectric (ME) effects—however, prior experimental studies have failed to find such an enhancement. Here, the authors report the unleashing of the potential of the (2-1) connectivity configuration: a piezofiber (one-dimension connectivity) layer laminated between two high-permeability magnetostrictive FeBSiC alloy ones (two-dimension connectivity) has near-ideal ME coupling. Very high ME effects of up to 22V∕cmOe (4×10−7s∕m) at 1Hz—an order of magnitude higher than the giant ones—have been found.

353 citations

Journal ArticleDOI
Junyi Zhai, Zengping Xing, Shuxiang Dong, Jiefang Li, Dwight Viehland1 
TL;DR: In this paper, the authors present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.
Abstract: The measurement of low-frequency (10−2–103Hz) minute magnetic field variations (10−12Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

345 citations

Journal ArticleDOI
TL;DR: In this article, the maximum induced magnetoelectric voltage at resonance was ∼10 Vp/Oe, which was ∼102 times higher than previous reports at subresonant frequencies.
Abstract: We have found that laminate composites consisting of longitudinally magnetized magnetostrictive Terfenol-D and longitudinally poled piezoelectric Pb(Zr,Ti)O3 layers have dramatically enhanced magnetoelectric effects when driven near resonance. The maximum induced magnetoelectric voltage at resonance was ∼10 Vp/Oe, which is ∼102 times higher than previous reports at subresonant frequencies.

318 citations


Cited by
More filters
Journal ArticleDOI
17 Aug 2006-Nature
TL;DR: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements that arises through the quantum mechanical phenomenon of exchange.
Abstract: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mechanical phenomenon of exchange. There are very few 'multiferroic' materials that exhibit both of these properties, but the 'magnetoelectric' coupling of magnetic and electrical properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technological aspirations.

6,813 citations

Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
TL;DR: Novel device paradigms based on magnetoelectric coupling are discussed, the key scientific challenges in the field are outlined, and high-quality thin-film multiferroics are reviewed.
Abstract: Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.

3,472 citations

Journal ArticleDOI
TL;DR: In this article, a review of mostly recent activities can be found, with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972.
Abstract: Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. A...

3,288 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations