scispace - formally typeset
Search or ask a question
Author

Shuyuan Yang

Bio: Shuyuan Yang is an academic researcher from Xidian University. The author has contributed to research in topics: Computer science & Sparse approximation. The author has an hindex of 33, co-authored 232 publications receiving 4411 citations. Previous affiliations of Shuyuan Yang include Chinese Ministry of Education & Zhejiang University.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey provides a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors, and lists the traditional and new applications.
Abstract: Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people's life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of object detection pipeline thoroughly and deeply, in this survey, we analyze the methods of existing typical detection models and describe the benchmark datasets at first. Afterwards and primarily, we provide a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list the traditional and new applications. Some representative branches of object detection are analyzed as well. Finally, we discuss the architecture of exploiting these object detection methods to build an effective and efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and further research.

749 citations

Journal ArticleDOI
Minghao Zhu1, Licheng Jiao1, Fang Liu1, Shuyuan Yang1, Jianing Wang1 
TL;DR: Zhang et al. as discussed by the authors proposed an end-to-end residual spectral-spatial attention network (RSSAN) for hyperspectral image classification, which takes raw 3D cubes as input data without additional feature engineering.
Abstract: In the last five years, deep learning has been introduced to tackle the hyperspectral image (HSI) classification and demonstrated good performance. In particular, the convolutional neural network (CNN)-based methods for HSI classification have made great progress. However, due to the high dimensionality of HSI and equal treatment of all bands, the performance of these methods is hampered by learning features from useless bands for classification. Moreover, for patchwise-based CNN models, equal treatment of spatial information from the pixel-centered neighborhood also hinders the performance of these methods. In this article, we propose an end-to-end residual spectral–spatial attention network (RSSAN) for HSI classification. The RSSAN takes raw 3-D cubes as input data without additional feature engineering. First, a spectral attention module is designed for spectral band selection from raw input data by emphasizing useful bands for classification and suppressing useless bands. Then, a spatial attention module is designed for the adaptive selection of spatial information by emphasizing pixels from the same class as the center pixel or those are useful for classification in the pixel-centered neighborhood and suppressing those from a different class or useless. Second, two attention modules are also used in the following CNN for adaptive feature refinement in spectral–spatial feature learning. Third, a sequential spectral–spatial attention module is embedded into a residual block to avoid overfitting and accelerate the training of the proposed model. Experimental studies demonstrate that the RSSAN achieved superior classification accuracy compared with the state of the art on three HSI data sets: Indian Pines (IN), University of Pavia (UP), and Kennedy Space Center (KSC).

239 citations

Proceedings ArticleDOI
19 Jun 2004
TL;DR: A new discrete particle swarm optimization algorithm based on quantum individual is proposed, which is simpler and more powerful than the algorithms available.
Abstract: The particle swarm optimization algorithm is a new methodology in evolutionary computation. It has been found to be extremely effective is solving a wide range of engineering problems, however, it is of low efficiency in dealing with the discrete problems. In this paper, a new discrete particle swarm optimization algorithm based on quantum individual is proposed. It is simpler and more powerful than the algorithms available. The simulation experiments and its application in the CDMA also prove its high efficiency.

218 citations

Journal ArticleDOI
TL;DR: This paper proposes a multiple-geometric-dictionaries-based clustered sparse coding scheme for SISR, and adds a self-similarity constraint on the recovered image in patch aggregation to reveal new features and details.
Abstract: Recently, single image super-resolution reconstruction (SISR) via sparse coding has attracted increasing interest. In this paper, we proposed a multiple-geometric-dictionaries-based clustered sparse coding scheme for SISR. Firstly, a large number of high-resolution (HR) image patches are randomly extracted from a set of example training images and clustered into several groups of “geometric patches,” from which the corresponding “geometric dictionaries” are learned to further sparsely code each local patch in a low-resolution image. A clustering aggregation is performed on the HR patches recovered by different dictionaries, followed by a subsequent patch aggregation to estimate the HR image. Considering that there are often many repetitive image structures in an image, we add a self-similarity constraint on the recovered image in patch aggregation to reveal new features and details. Finally, the HR residual image is estimated by the proposed recovery method and compensated to better preserve the subtle details of the images. Some experiments test the proposed method on natural images, and the results show that the proposed method outperforms its counterparts in both visual fidelity and numerical measures.

193 citations

Journal ArticleDOI
Shuyuan Yang1, Min Wang1, Licheng Jiao1, Ruixia Wu1, Zhaoxia Wang1 
TL;DR: A new contourlet packet is constructed based on a complete wavelet quadtree followed by a nonsubsampled directional filter bank, which has more accurate reconstruction of images than WP and shows the superiorities of the method to its counterparts in image clarity and some numerical guidelines.

190 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper presents a detailed overview of the basic concepts of PSO and its variants, and provides a comprehensive survey on the power system applications that have benefited from the powerful nature ofPSO as an optimization technique.
Abstract: Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed.

2,147 citations

Journal ArticleDOI
TL;DR: This review covers nearly every application and technology in the field of remote sensing, ranging from preprocessing to mapping, and a conclusion regarding the current state-of-the art methods, a critical conclusion on open challenges, and directions for future research are presented.
Abstract: Deep learning (DL) algorithms have seen a massive rise in popularity for remote-sensing image analysis over the past few years. In this study, the major DL concepts pertinent to remote-sensing are introduced, and more than 200 publications in this field, most of which were published during the last two years, are reviewed and analyzed. Initially, a meta-analysis was conducted to analyze the status of remote sensing DL studies in terms of the study targets, DL model(s) used, image spatial resolution(s), type of study area, and level of classification accuracy achieved. Subsequently, a detailed review is conducted to describe/discuss how DL has been applied for remote sensing image analysis tasks including image fusion, image registration, scene classification, object detection, land use and land cover (LULC) classification, segmentation, and object-based image analysis (OBIA). This review covers nearly every application and technology in the field of remote sensing, ranging from preprocessing to mapping. Finally, a conclusion regarding the current state-of-the art methods, a critical conclusion on open challenges, and directions for future research are presented.

1,181 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field is provided, and the challenges and suggested solutions to help researchers understand the existing research gaps.
Abstract: In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.

1,084 citations

01 Jan 1998
TL;DR: The lateral intraparietal area (LIP) as mentioned in this paper has been shown to have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields) and the visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.
Abstract: When natural scenes are viewed, a multitude of objects that are stable in their environments are brought in and out of view by eye movements. The posterior parietal cortex is crucial for the analysis of space, visual attention and movement 1 . Neurons in one of its subdivisions, the lateral intraparietal area (LIP), have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields)2. We have tested the responses of LIP neurons to stimuli that entered their receptive field by saccades. Neurons had little or no response to stimuli brought into their receptive field by saccades, unless the stimuli were behaviourally significant. We established behavioural significance in two ways: either by making a stable stimulus task-relevant, or by taking advantage of the attentional attraction of an abruptly appearing stimulus. Our results show that under ordinary circumstances the entire visual world is only weakly represented in LIP. The visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.

1,007 citations