scispace - formally typeset
Search or ask a question
Author

Shwetak N. Patel

Bio: Shwetak N. Patel is an academic researcher from University of Washington. The author has contributed to research in topics: Signal & Gesture. The author has an hindex of 52, co-authored 265 publications receiving 11969 citations. Previous affiliations of Shwetak N. Patel include Microsoft & University of California, Los Angeles.


Papers
More filters
Proceedings ArticleDOI
16 May 2010
TL;DR: It is demonstrated that an attacker who is able to infiltrate virtually any Electronic Control Unit (ECU) can leverage this ability to completely circumvent a broad array of safety-critical systems and present composite attacks that leverage individual weaknesses.
Abstract: Modern automobiles are no longer mere mechanical devices; they are pervasively monitored and controlled by dozens of digital computers coordinated via internal vehicular networks. While this transformation has driven major advancements in efficiency and safety, it has also introduced a range of new potential risks. In this paper we experimentally evaluate these issues on a modern automobile and demonstrate the fragility of the underlying system structure. We demonstrate that an attacker who is able to infiltrate virtually any Electronic Control Unit (ECU) can leverage this ability to completely circumvent a broad array of safety-critical systems. Over a range of experiments, both in the lab and in road tests, we demonstrate the ability to adversarially control a wide range of automotive functions and completely ignore driver input\dash including disabling the brakes, selectively braking individual wheels on demand, stopping the engine, and so on. We find that it is possible to bypass rudimentary network security protections within the car, such as maliciously bridging between our car's two internal subnets. We also present composite attacks that leverage individual weaknesses, including an attack that embeds malicious code in a car's telematics unit and that will completely erase any evidence of its presence after a crash. Looking forward, we discuss the complex challenges in addressing these vulnerabilities while considering the existing automotive ecosystem.

1,463 citations

Proceedings ArticleDOI
30 Sep 2013
TL;DR: WiSee is presented, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures and achieves this goal without requiring instrumentation of the human body with sensing devices.
Abstract: This paper presents WiSee, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources. Further, it achieves this goal without requiring instrumentation of the human body with sensing devices. We implement a proof-of-concept prototype of WiSee using USRP-N210s and evaluate it in both an office environment and a two- bedroom apartment. Our results show that WiSee can identify and classify a set of nine gestures with an average accuracy of 94%.

1,045 citations

Proceedings ArticleDOI
16 Sep 2007
TL;DR: In this article, a single plug-in sensor is used to detect a variety of electrical events throughout the home, such as turning on or off a particular light switch, a television set, or an electric stove.
Abstract: Activity sensing in the home has a variety of important applications, including healthcare, entertainment, home automation, energy monitoring and post-occupancy research studies Many existing systems for detecting occupant activity require large numbers of sensors, invasive vision systems, or extensive installation procedures We present an approach that uses a single plug-in sensor to detect a variety of electrical events throughout the home This sensor detects the electrical noise on residential power lines created by the abrupt switching of electrical devices and the noise created by certain devices while in operation We use machine learning techniques to recognize electrically noisy events such as turning on or off a particular light switch, a television set, or an electric stove We tested our system in one home for several weeks and in five homes for one week each to evaluate the system performance over time and in different types of houses Results indicate that we can learn and classify various electrical events with accuracies ranging from 85-90%

473 citations

01 Jan 2010
TL;DR: In this article, the authors proposed a new solution for automatically detecting and classifying the use of electronic devices in a home from a single point of sensing, based on the fact that most modern consumer electronics and fluorescent lighting employ switch mode power supplies (SMPS) to achieve high efficiency.
Abstract: This paper presents ElectriSense, a new solution for automatically detecting and classifying the use of electronic devices in a home from a single point of sensing. ElectriSense relies on the fact that most modern consumer electronics and fluorescent lighting employ switch mode power supplies (SMPS) to achieve high efficiency. These power supplies continuously generate high frequency electromagnetic interference (EMI) during operation that propagates throughout a home’s power wiring. We show both analytically and by in-home experimentation that EMI signals are stable and predictable based on the device’s switching frequency characteristics. Unlike past transient noise-based solutions, this new approach provides the ability for EMI signatures to be applicable across homes while still being able to differentiate between similar devices in a home. We have evaluated our solution in seven homes, including one six-month deployment. Our results show that ElectriSense can identify and classify the usage of individual devices with a mean accuracy of 93.82%.

435 citations

Proceedings ArticleDOI
26 Sep 2010
TL;DR: This paper's results show that ElectriSense can identify and classify the usage of individual devices with a mean accuracy of 93.82% and shows both analytically and by in-home experimentation that EMI signals are stable and predictable based on the device's switching frequency characteristics.
Abstract: This paper presents ElectriSense, a new solution for automatically detecting and classifying the use of electronic devices in a home from a single point of sensing. ElectriSense relies on the fact that most modern consumer electronics and fluorescent lighting employ switch mode power supplies (SMPS) to achieve high efficiency. These power supplies continuously generate high frequency electromagnetic interference (EMI) during operation that propagates throughout a home's power wiring. We show both analytically and by in-home experimentation that EMI signals are stable and predictable based on the device's switching frequency characteristics. Unlike past transient noise-based solutions, this new approach provides the ability for EMI signatures to be applicable across homes while still being able to differentiate between similar devices in a home. We have evaluated our solution in seven homes, including one six-month deployment. Our results show that ElectriSense can identify and classify the usage of individual devices with a mean accuracy of 93.82%.

381 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: An intelligent collaborative security model to minimize security risk is proposed; how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context is discussed; and various IoT and eHealth policies and regulations are addressed to determine how they can facilitate economies and societies in terms of sustainable development.
Abstract: The Internet of Things (IoT) makes smart objects the ultimate building blocks in the development of cyber-physical smart pervasive frameworks. The IoT has a variety of application domains, including health care. The IoT revolution is redesigning modern health care with promising technological, economic, and social prospects. This paper surveys advances in IoT-based health care technologies and reviews the state-of-the-art network architectures/platforms, applications, and industrial trends in IoT-based health care solutions. In addition, this paper analyzes distinct IoT security and privacy features, including security requirements, threat models, and attack taxonomies from the health care perspective. Further, this paper proposes an intelligent collaborative security model to minimize security risk; discusses how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context; addresses various IoT and eHealth policies and regulations across the world to determine how they can facilitate economies and societies in terms of sustainable development; and provides some avenues for future research on IoT-based health care based on a set of open issues and challenges.

2,190 citations

01 Sep 2010

2,148 citations