scispace - formally typeset
Search or ask a question
Author

Shyamal Buch

Other affiliations: Toyota
Bio: Shyamal Buch is an academic researcher from Stanford University. The author has contributed to research in topics: Activity recognition & Semantics. The author has an hindex of 9, co-authored 12 publications receiving 837 citations. Previous affiliations of Shyamal Buch include Toyota.

Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: It is demonstrated empirically that the new Single-Stream Temporal Action Proposals model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature.
Abstract: Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

391 citations

Proceedings ArticleDOI
01 Jan 2017
TL;DR: This work introduces the new architecture for Single-Stream Temporal Action Detection (SS-TAD), which effectively integrates joint action detection with its semantic sub-tasks in a single unifying end-to-end framework.
Abstract: In this work, we present a new intuitive, end-to-end approach for temporal action detection in untrimmed videos. We introduce our new architecture for Single-Stream Temporal Action Detection (SS-TAD), which effectively integrates joint action detection with its semantic sub-tasks in a single unifying end-to-end framework. We develop a method for training our deep recurrent architecture based on enforcing semantic constraints on intermediate modules that are gradually relaxed as learning progresses. We find that such a dynamic learning scheme enables SS-TAD to achieve higher overall detection performance, with fewer training epochs. By design, our single-pass network is very efficient and can operate at 701 frames per second, while simultaneously outperforming the state-of-the-art methods for temporal action detection on THUMOS’14.

230 citations

Posted Content
TL;DR: It is shown that the full interactivity of the scenes enables agents to learn useful visual representations that accelerate the training of downstream manipulation tasks, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of human demonstrated (mobile) manipulation behaviors.
Abstract: We present iGibson 1.0, a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes. Our environment contains 15 fully interactive home-sized scenes with 108 rooms populated with rigid and articulated objects. The scenes are replicas of real-world homes, with distribution and the layout of objects aligned to those of the real world. iGibson 1.0 integrates several key features to facilitate the study of interactive tasks: i) generation of high-quality virtual sensor signals (RGB, depth, segmentation, LiDAR, flow and so on), ii) domain randomization to change the materials of the objects (both visual and physical) and/or their shapes, iii) integrated sampling-based motion planners to generate collision-free trajectories for robot bases and arms, and iv) intuitive human-iGibson interface that enables efficient collection of human demonstrations. Through experiments, we show that the full interactivity of the scenes enables agents to learn useful visual representations that accelerate the training of downstream manipulation tasks. We also show that iGibson 1.0 features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of human demonstrated (mobile) manipulation behaviors. iGibson 1.0 is open-source, equipped with comprehensive examples and documentation. For more information, visit our project website: this http URL

115 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The visually grounded action graph is introduced, a structured representation capturing the latent dependency between grounding and references in video, and a new reference-aware multiple instance learning objective for weak supervision of grounding in videos is proposed.
Abstract: Grounding textual phrases in visual content with standalone image-sentence pairs is a challenging task. When we consider grounding in instructional videos, this problem becomes profoundly more complex: the latent temporal structure of instructional videos breaks independence assumptions and necessitates contextual understanding for resolving ambiguous visual-linguistic cues. Furthermore, dense annotations and video data scale mean supervised approaches are prohibitively costly. In this work, we propose to tackle this new task with a weakly-supervised framework for reference-aware visual grounding in instructional videos, where only the temporal alignment between the transcription and the video segment are available for supervision. We introduce the visually grounded action graph, a structured representation capturing the latent dependency between grounding and references in video. For optimization, we propose a new reference-aware multiple instance learning (RA-MIL) objective for weak supervision of grounding in videos. We evaluate our approach over unconstrained videos from YouCookII and RoboWatch, augmented with new reference-grounding test set annotations. We demonstrate that our jointly optimized, reference-aware approach simultaneously improves visual grounding, reference-resolution, and generalization to unseen instructional video categories.

99 citations

Posted Content
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie Chen, Kathleen Creel, Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel1, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Ahmad Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Yang Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang 
TL;DR: The authors provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e. g.g. model architectures, training procedures, data, systems, security, evaluation, theory) to their applications.
Abstract: AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

76 citations


Cited by
More filters
Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work presents SlowFast networks for video recognition, which achieves strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by the SlowFast concept.
Abstract: We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code has been made available at: https://github.com/facebookresearch/SlowFast.

2,320 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: TAL-Net as mentioned in this paper improves receptive field alignment using a multi-scale architecture that can accommodate extreme variation in action durations and better exploit the temporal context of actions for both proposal generation and action classification by appropriately extending receptive fields.
Abstract: We propose TAL-Net, an improved approach to temporal action localization in video that is inspired by the Faster RCNN object detection framework. TAL-Net addresses three key shortcomings of existing approaches: (1) we improve receptive field alignment using a multi-scale architecture that can accommodate extreme variation in action durations; (2) we better exploit the temporal context of actions for both proposal generation and action classification by appropriately extending receptive fields; and (3) we explicitly consider multi-stream feature fusion and demonstrate that fusing motion late is important. We achieve state-of-the-art performance for both action proposal and localization on THUMOS'14 detection benchmark and competitive performance on ActivityNet challenge.

647 citations

Book ChapterDOI
Tianwei Lin1, Xu Zhao1, Haisheng Su1, Chongjing Wang, Ming Yang1 
08 Sep 2018
TL;DR: An effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts "local to global" fashion and significantly improves the state-of-the-art temporal action detection performance.
Abstract: Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts “local to global” fashion. Locally, BSN first locates temporal boundaries with high probabilities, then directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct experiments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art temporal action proposal generation methods with high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance.

546 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Zhang et al. as mentioned in this paper exploit the proposal-proposal relations using GraphConvolutional Networks (GCNs) to exploit the context information for each proposal and the correlations between distinct actions.
Abstract: Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using GraphConvolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14(49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships.

460 citations

Proceedings ArticleDOI
Tianwei Lin1, Xiao Liu1, Li Xin1, Errui Ding1, Shilei Wen1 
01 Oct 2019
TL;DR: This work proposes an effective, efficient and end-to-end proposal generation method, named Boundary-Matching Network (BMN), which generates proposals with precise temporal boundaries as well as reliable confidence scores simultaneously, and can achieve state-of-the-art temporal action detection performance.
Abstract: Temporal action proposal generation is an challenging and promising task which aims to locate temporal regions in real-world videos where action or event may occur. Current bottom-up proposal generation methods can generate proposals with precise boundary, but cannot efficiently generate adequately reliable confidence scores for retrieving proposals. To address these difficulties, we introduce the Boundary-Matching (BM) mechanism to evaluate confidence scores of densely distributed proposals, which denote a proposal as a matching pair of starting and ending boundaries and combine all densely distributed BM pairs into the BM confidence map. Based on BM mechanism, we propose an effective, efficient and end-to-end proposal generation method, named Boundary-Matching Network (BMN), which generates proposals with precise temporal boundaries as well as reliable confidence scores simultaneously. The two-branches of BMN are jointly trained in an unified framework. We conduct experiments on two challenging datasets: THUMOS-14 and ActivityNet-1.3, where BMN shows significant performance improvement with remarkable efficiency and generalizability. Further, combining with existing action classifier, BMN can achieve state-of-the-art temporal action detection performance.

453 citations