scispace - formally typeset
Search or ask a question
Author

Shyamanta M. Hazarika

Bio: Shyamanta M. Hazarika is an academic researcher from Indian Institute of Technology Guwahati. The author has contributed to research in topics: GRASP & Bispectrum. The author has an hindex of 18, co-authored 105 publications receiving 1775 citations. Previous affiliations of Shyamanta M. Hazarika include Indian Institutes of Technology & University of Leeds.


Papers
More filters
Journal ArticleDOI
TL;DR: The paper is a overview of the major qualitative spatial representation and reasoning techniques including ontological aspects, topology, distance, orientation and shape, and qualitative spatial reasoning including reasoning about spatial change.
Abstract: The paper is a overview of the major qualitative spatial representation and reasoning techniques. We survey the main aspects of the representation of qualitative knowledge including ontological aspects, topology, distance, orientation and shape. We also consider qualitative spatial reasoning including reasoning about spatial change. Finally there is a discussion of theoretical results and a glimpse of future work. The paper is a revised and condensed version of [33,34].

745 citations

Journal ArticleDOI
TL;DR: An objective statistical survey across the various sub-disciplines in the field and applied information analysis and network-theory techniques to answer several key questions relevant to the field reveal that there has been a sustained growth in this field.
Abstract: Assistive technology for the visually impaired and blind people is a research field that is gaining increasing prominence owing to an explosion of new interest in it from disparate disciplines. The field has a very relevant social impact on our ever-increasing aging and blind populations. While many excellent state-of-the-art accounts have been written till date, all of them are subjective in nature. We performed an objective statistical survey across the various sub-disciplines in the field and applied information analysis and network-theory techniques to answer several key questions relevant to the field. To analyze the field we compiled an extensive database of scientific research publications over the last two decades. We inferred interesting patterns and statistics concerning the main research areas and underlying themes, identified leading journals and conferences, captured growth patterns of the research field; identified active research communities and present our interpretation of trends in the field for the near future. Our results reveal that there has been a sustained growth in this field; from less than 50 publications per year in the mid 1990s to close to 400 scientific publications per year in 2014. Assistive Technology for persons with visually impairments is expected to grow at a swift pace and impact the lives of individuals and the elderly in ways not previously possible.

158 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: In this article, derived features of bispectrum for quantification of emotions using a Valence-Arousal emotion model were explored and a feature vector was obtained through backward sequential search.
Abstract: Emotion recognition from electroencephalogram (EEG) signals is one of the most challenging tasks. Bispectral analysis offers a way of gaining phase information by detecting phase relationships between frequency components and characterizing the non- Gaussian information contained in the EEG signals. In this paper, we explore derived features of bispectrum for quantification of emotions using a Valence-Arousal emotion model; and arrive at a feature vector through backward sequential search. Cross- validated accuracies of 64.84% for Low/High Arousal classification and 61.17% for Low/High Valence were obtained on the DEAP data set based on the proposed features; comparable to classification accuracies reported in the literature.

107 citations

Book
31 May 2012
TL;DR: This chapter focuses on the topological and mereological relations, contact, and parthood, between spatiotemporal regions as axiomatized in so-called mereotopologies, and their underlying ontological choices and different ways of systematically looking at them.
Abstract: This chapter focuses on the topological and mereological relations, contact, and parthood, between spatiotemporal regions as axiomatized in so-called mereotopologies. Despite, or because of, their simplicity, a variety of different first-order axiomatizations have been proposed. This chapter discusses their underlying ontological choices and different ways of systematically looking at them. The chapter further gives an overview of the algebraic, topological, and graph-theoretic representations of mereotopological models which help to better understand the model-theoretic consequences of the various ontological choices. While much work on mereotopologies has been primarily theoretical, the focus started shifting towards applications and domain-specific extensions of mereotopology. These aspects will most likely guide the future direction of the field: How can mereotopologies be extended or otherwise adjusted to better suit practical needs? Moreover, the integration of mereotopology into more comprehensive and maybe more pragmatic ontologies of space and time remains another challenge in the field of region-based space.

67 citations

Book ChapterDOI
01 Jan 2003
TL;DR: The aim is to integrate quantitative and qualitative modes of representation and reasoning for the analysis of dynamic scenes, including prototypical spatial relations and spatio-temporal event descriptors automatically inferred from input data.
Abstract: In recent years there has been increasing interest in constructing cognitive vision systems capable of interpreting the high level semantics of dynamic scenes. Purely quantitative approaches to the task of constructing such systems have met with some success. However, qualitative analysis of dynamic scenes has the advantage of allowing easier generalisation of classes of different behaviours and guarding against the propagation of errors caused by uncertainty and noise in the quantitative data. Our aim is to integrate quantitative and qualitative modes of representation and reasoning for the analysis of dynamic scenes. In particular, in this paper we outline an approach for constructing cognitive vision systems using qualitative spatial-temporal representations including prototypical spatial relations and spatio-temporal event descriptors automatically inferred from input data. The overall architecture relies on abduction: the system searches for explanations, phrased in terms of the learned spatio-temporal event descriptors, to account for the video data.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: When I started out as a newly hatched PhD student, one of the first articles I read and understood was Ray Reiter’s classic article on default logic, and I became fascinated by both default logic and, more generally, non-monotonic logics.
Abstract: When I started out as a newly hatched PhD student, back in the day, one of the first articles I read and understood (or at least thought that I understood) was Ray Reiter’s classic article on default logic (Reiter, 1980).This was some years after the famous ‘non-monotonic logic’ issue of Artificial Intelligence in which that article appeared, but default logic was still one of the leading approaches, a tribute to the simplicity and power of the theory. As a result of reading the article, I became fascinated by both default logic and, more generally, non-monotonic logics. However, despite my fascination, these approaches never seemed terribly useful for the kinds of problem that I was supposed to be studying—problems like those in medical decision making—and so I eventually lost interest. In fact non-monotonic logics seemed to me, and to many people at the time I think, not to be terribly useful for anything. They were interesting, and clearly relevant to the long-term goals of Artificial Intelligence as a discipline, but not of any immediate practical importance. This verdict, delivered at the end of the 1980s, continued, I think, to be true for the next few years while researchers working in non-monotonic logics studied problems that to outsiders seemed to be ever more obscure. However, by the end of the 1990s, it was becoming clear, even to folk as short-sighted as I, that non-monotonic logics were getting to the point at which they could be used to solve practical problems. Knowledge in action shows quite how far these techniques have come. The reason that non-monotonic logics were invented was, of course, in order to use logic to reason about the world. Our knowledge of the world is typically incomplete, and so, in order to reason about it, one has to make assumptions about things one does not know. This, in turn, requires mechanisms for both making assumptions and then retracting them if and when they turn out not to be true. Non-monotonic logics are intended to handle this kind of assumption making and retracting, providing a mechanism that has the clean semantics of logic, but which has a non-monotonic set of conclusions. Much of the early work on non-monotonic logics was concerned with theoretical reasoning, that is reasoning about the beliefs of an agent—what the agent believes to be true. Theoretical reasoning is the domain of all those famous examples like ‘Typically birds fly. Tweety is a bird, so does Tweety fly?’, and the fact that so much of non-monotonic reasoning seemed to focus on theoretical reasoning was why I lost interest in it. I became much more concerned with practical reasoning—that is reasoning about what an agent should do—and non-monotonic reasoning seemed to me to have nothing interesting to say about practical reasoning. Of course I was wrong. When one tries to formulate any kind of description of the world as the basis for planning, one immediately runs into applications of non-monotonic logics, for example in keeping track of the state of a changing world. It is this use of non-monotonic logic that is at the heart of Knowledge in action. Building on the McCarthy’s situation calculus, Knowledge in action constructs a theory of action that encompasses a very large part of what an agent requires to reason about the world. As Reiter says in the final chapter,

899 citations

Journal ArticleDOI
TL;DR: The paper is a overview of the major qualitative spatial representation and reasoning techniques including ontological aspects, topology, distance, orientation and shape, and qualitative spatial reasoning including reasoning about spatial change.
Abstract: The paper is a overview of the major qualitative spatial representation and reasoning techniques. We survey the main aspects of the representation of qualitative knowledge including ontological aspects, topology, distance, orientation and shape. We also consider qualitative spatial reasoning including reasoning about spatial change. Finally there is a discussion of theoretical results and a glimpse of future work. The paper is a revised and condensed version of [33,34].

745 citations

Book
01 Jan 2003
TL;DR: Constraint programming combines ideas from artificial intelligence, programming languages, databases, and operational research as mentioned in this paper, and it has been widely used in the field of software engineering and management.
Abstract: Scheduling, vehicle routing and timetabling are all examples of constraint problems, and methods to solve them rely on the idea of constraint propagation and search. This book meets the need for a modern, multidisciplinary introduction to the field that covers foundations and applications. Written by Krzysztof Apt, an authority on the subject, it will be welcomed by graduate students and professionals. With the insertion of constraint techniques into programming environments, new developments have accelerated the solution process. Constraint programming combines ideas from artificial intelligence, programming languages, databases, and operational research.

730 citations

Journal ArticleDOI
TL;DR: A survey of the neurophysiological research performed from 2009 to 2016 is presented, providing a comprehensive overview of the existing works in emotion recognition using EEG signals, and a set of good practice recommendations that researchers must follow to achieve reproducible, replicable, well-validated and high-quality results.
Abstract: Emotions have an important role in daily life, not only in human interaction, but also in decision-making processes, and in the perception of the world around us. Due to the recent interest shown by the research community in establishing emotional interactions between humans and computers, the identification of the emotional state of the former became a need. This can be achieved through multiple measures, such as subjective self-reports, autonomic and neurophysiological measurements. In the last years, Electroencephalography (EEG) received considerable attention from researchers, since it can provide a simple, cheap, portable, and ease-to-use solution for identifying emotions. In this paper, we present a survey of the neurophysiological research performed from 2009 to 2016, providing a comprehensive overview of the existing works in emotion recognition using EEG signals. We focus our analysis in the main aspects involved in the recognition process (e.g., subjects, features extracted, classifiers), and compare the works per them. From this analysis, we propose a set of good practice recommendations that researchers must follow to achieve reproducible, replicable, well-validated and high-quality results. We intend this survey to be useful for the research community working on emotion recognition through EEG signals, and in particular for those entering this field of research, since it offers a structured starting point.

640 citations