scispace - formally typeset
Search or ask a question
Author

Shyamnath Gollakota

Bio: Shyamnath Gollakota is an academic researcher from University of Washington. The author has contributed to research in topics: Computer science & Wireless. The author has an hindex of 42, co-authored 107 publications receiving 10393 citations. Previous affiliations of Shyamnath Gollakota include Academia Sinica & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
27 Aug 2007
TL;DR: This paper adopts the opposite approach; it encourages strategically picked senders to interfere, and achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.
Abstract: Traditionally, interference is considered harmful. Wireless networks strive to avoid scheduling multiple transmissions at the same time in order to prevent interference. This paper adopts the opposite approach; it encourages strategically picked senders to interfere. Instead of forwarding packets, routers forward the interfering signals. The destination leverages network-level information to cancel the interference and recover the signal destined to it. The result is analog network coding because it mixes signals not bits.So, what if wireless routers forward signals instead of packets? Theoretically, such an approach doubles the capacity of the canonical 2-way relay network. Surprisingly, it is also practical. We implement our design using software radios and show that it achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.

1,440 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: The design of a communication system that enables two devices to communicate using ambient RF as the only source of power is presented, enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.
Abstract: We present the design of a communication system that enables two devices to communicate using ambient RF as the only source of power. Our approach leverages existing TV and cellular transmissions to eliminate the need for wires and batteries, thus enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.To achieve this, we introduce ambient backscatter, a new communication primitive where devices communicate by backscattering ambient RF signals. Our design avoids the expensive process of generating radio waves; backscatter communication is orders of magnitude more power-efficient than traditional radio communication. Further, since it leverages the ambient RF signals that are already around us, it does not require a dedicated power infrastructure as in traditional backscatter communication. To show the feasibility of our design, we prototype ambient backscatter devices in hardware and achieve information rates of 1 kbps over distances of 2.5 feet and 1.5 feet, while operating outdoors and indoors respectively. We use our hardware prototype to implement proof-of-concepts for two previously infeasible ubiquitous communication applications.

1,269 citations

Proceedings ArticleDOI
30 Sep 2013
TL;DR: WiSee is presented, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures and achieves this goal without requiring instrumentation of the human body with sensing devices.
Abstract: This paper presents WiSee, a novel gesture recognition system that leverages wireless signals (e.g., Wi-Fi) to enable whole-home sensing and recognition of human gestures. Since wireless signals do not require line-of-sight and can traverse through walls, WiSee can enable whole-home gesture recognition using few wireless sources. Further, it achieves this goal without requiring instrumentation of the human body with sensing devices. We implement a proof-of-concept prototype of WiSee using USRP-N210s and evaluate it in both an office environment and a two- bedroom apartment. Our results show that WiSee can identify and classify a set of nine gestures with an average accuracy of 94%.

1,045 citations

Journal ArticleDOI
17 Aug 2008
TL;DR: This paper presents ZigZag, an 802.11 receiver design that combats hidden terminals, a new form of interference cancellation that exploits asynchrony across successive collisions in order to bootstrap its decoding.
Abstract: This paper presents ZigZag, an 802.11 receiver design that combats hidden terminals. ZigZag's core contribution is a new form of interference cancellation that exploits asynchrony across successive collisions. Specifically, 802.11 retransmissions, in the case of hidden terminals, cause successive collisions. These collisions have different interference-free stretches at their start, which ZigZag exploits to bootstrap its decoding.ZigZag makes no changes to the 802.11 MAC and introduces no overhead when there are no collisions. But, when senders collide, ZigZag attains the same throughput as if the colliding packets were a priori scheduled in separate time slots. We build a prototype of ZigZag in GNU Radio. In a testbed of 14 USRP nodes, ZigZag reduces the average packet loss rate at hidden terminals from 72.6% to about 0.7%.

671 citations

Proceedings ArticleDOI
17 Aug 2014
TL;DR: Wi-Fi Backscatter is presented, a novel communication system that bridges RF-powered devices with the Internet and shows that it is possible to reuse existing Wi-Fi infrastructure to provide Internet connectivity to RF- powered devices.
Abstract: RF-powered computers are small devices that compute and communicate using only the power that they harvest from RF signals. While existing technologies have harvested power from ambient RF sources (e.g., TV broadcasts), they require a dedicated gateway (like an RFID reader) for Internet connectivity. We present Wi-Fi Backscatter, a novel communication system that bridges RF-powered devices with the Internet. Specifically, we show that it is possible to reuse existing Wi-Fi infrastructure to provide Internet connectivity to RF-powered devices. To show Wi-Fi Backscatter's feasibility, we build a hardware prototype and demonstrate the first communication link between an RF-powered device and commodity Wi-Fi devices. We use off-the-shelf Wi-Fi devices including Intel Wi-Fi cards, Linksys Routers, and our organization's Wi-Fi infrastructure, and achieve communication rates of up to 1 kbps and ranges of up to 2.1 meters. We believe that this new capability can pave the way for the rapid deployment and adoption of RF-powered devices and achieve ubiquitous connectivity via nearby mobile devices that are Wi-Fi enabled.

541 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.

2,190 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: The design and implementation of the first in-band full duplex WiFi radios that can simultaneously transmit and receive on the same channel using standard WiFi 802.11ac PHYs are presented and achieves close to the theoretical doubling of throughput in all practical deployment scenarios.
Abstract: This paper presents the design and implementation of the first in-band full duplex WiFi radios that can simultaneously transmit and receive on the same channel using standard WiFi 802.11ac PHYs and achieves close to the theoretical doubling of throughput in all practical deployment scenarios. Our design uses a single antenna for simultaneous TX/RX (i.e., the same resources as a standard half duplex system). We also propose novel analog and digital cancellation techniques that cancel the self interference to the receiver noise floor, and therefore ensure that there is no degradation to the received signal. We prototype our design by building our own analog circuit boards and integrating them with a fully WiFi-PHY compatible software radio implementation. We show experimentally that our design works robustly in noisy indoor environments, and provides close to the expected theoretical doubling of throughput in practice.

2,084 citations

Proceedings ArticleDOI
Jung-Il Choi1, Mayank Jain1, Kannan Srinivasan1, Phil Levis1, Sachin Katti1 
20 Sep 2010
TL;DR: In this paper, a single channel full-duplex wireless transceiver is proposed, which uses a combination of RF and baseband techniques to achieve FD with minimal effect on link reliability.
Abstract: This paper discusses the design of a single channel full-duplex wireless transceiver. The design uses a combination of RF and baseband techniques to achieve full-duplexing with minimal effect on link reliability. Experiments on real nodes show the full-duplex prototype achieves median performance that is within 8% of an ideal full-duplexing system. This paper presents Antenna Cancellation, a novel technique for self-interference cancellation. In conjunction with existing RF interference cancellation and digital baseband interference cancellation, antenna cancellation achieves the amount of self-interference cancellation required for full-duplex operation. The paper also discusses potential MAC and network gains with full-duplexing. It suggests ways in which a full-duplex system can solve some important problems with existing wireless systems including hidden terminals, loss of throughput due to congestion, and large end-to-end delays.

1,623 citations