scispace - formally typeset
Search or ask a question
Author

Sidi El Becaye Maïga

Bio: Sidi El Becaye Maïga is an academic researcher from Université de Moncton. The author has contributed to research in topics: Nanofluid & Heat transfer coefficient. The author has an hindex of 7, co-authored 7 publications receiving 1770 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks.

929 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the forced convection flow of water and ethylene glycol inside a uniformly heated tube that is submitted to a constant and uniform heat flux at the wall.

648 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical method based on the control volume approach was used to solve the system of nonlinear and coupled governing equations of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to uniform wall heat flux boundary condition.
Abstract: Purpose – To study the hydrodynamic and thermal behaviors of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to a uniform wall heat flux boundary condition.Design/methodology/approach – A numerical method based on the “control‐volume” approach was used to solve the system of non‐linear and coupled governing equations. The classical κ‐e model was employed in order to model the turbulence, together with staggered non‐uniform grid system. The computer model, satisfactorily validated, was used to perform an extended parametric study covering wide ranges of the governing parameters. Information regarding the hydrodynamic and thermal behaviors of nanofluid flow are presented.Findings – Numerical results show that the inclusion of nanoparticles into the base fluid has produced an augmentation of the heat transfer coefficient, which has been found to increase appreciably with an increase of particles volume co...

285 citations

01 Jan 2005
TL;DR: In this paper, the problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks.
Abstract: The problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks. Numerical results, as obtained for water-γAl 2 O 3 and Ethylene Glycol-γAl 2 O 3 mixtures, have clearly shown that the inclusion of nanoparticles into the base fluids has produced a considerable augmentation of the heat transfer coefficient that clearly increases with an increase of the particle concentration. However, the presence of such particles has also induced drastic effects on the wall shear stress that increases appreciably with the particle loading. Among the mixtures studied, the Ethylene Glycol -γAl 2 O 3 nanofluid appears to offer a better heat transfer enhancement than water- γ/Al 2 O 3 ; it is also the one that has induced more pronounced adverse effects on the wall shear stress. For the case of tube flow, results have also shown that, in general, the heat transfer enhancement also increases considerably with an augmentation of the flow Reynolds number. Correlations have been provided for computing the Nusselt number for the nanofluids considered in terms of the Reynolds and the Prandtl numbers and this for both the thermal boundary conditions considered

93 citations

Journal ArticleDOI
TL;DR: In this article, the problem of the transient laminar mixed convection flow of air in a vertical tube under buoyancy effect and high wall heat flux condition has been numerically investigated by using a full 3D-transient model and Boussinesq's assumptions.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations

Journal ArticleDOI
TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.

1,988 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior of nanofluids inside a two-sided lid-driven differentially heated square cavity to gain insight into convective recirculation and flow processes induced by a nano-fluid.

1,797 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the finite volume technique to solve the governing equations of heat transfer and fluid flow due to buoyancy forces in a partially heated enclosure using nanofluids.

1,783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the forced convection heat transfer with nanofluids, including simulations, simulations, and experimental results.

1,738 citations