scispace - formally typeset
Search or ask a question
Author

Siegfried Selberherr

Other affiliations: Uppsala University, Infineon Technologies, University of Vienna  ...read more
Bio: Siegfried Selberherr is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Monte Carlo method & Electromigration. The author has an hindex of 46, co-authored 1002 publications receiving 12230 citations. Previous affiliations of Siegfried Selberherr include Uppsala University & Infineon Technologies.


Papers
More filters
Book
01 Jan 1984
TL;DR: The history of numerical device modeling can be traced back to the early 1970s as mentioned in this paper, when the basic Semiconductor Equations were defined and the goal of modeling was to identify the most fundamental properties of numerical devices.
Abstract: 1. Introduction.- 1.1 The Goal of Modeling.- 1.2 The History of Numerical Device Modeling.- 1.3 References.- 2. Some Fundamental Properties.- 2.1 Poisson's Equation.- 2.2 Continuity Equations.- 2.3 Carrier Transport Equations.- 2.4 Carrier Concentrations.- 2.5 Heat Flow Equation.- 2.6 The Basic Semiconductor Equations.- 2.7 References.- 3. Proeess Modeling.- 3.1 Ion Implantation.- 3.2 Diffusion.- 3.3 Oxidation.- 3.4 References.- 4. The Physical Parameters.- 4.1 Carrier Mobility Modeling.- 4.2 Carrier Generation-Recombination Modeling.- 4.3 Thermal Conductivity Modeling.- 4.4 Thermal Generation Modeling.- 4.5 References.- 5. Analytical Investigations About the Basic Semiconductor Equations.- 5.1 Domain and Boundary Conditions.- 5.2 Dependent Variables.- 5.3 The Existence of Solutions.- 5.4 Uniqueness or Non-Uniqueness of Solutions.- 5.5 Sealing.- 5.6 The Singular Perturbation Approach.- 5.7 Referenees.- 6. The Diseretization of the Basic Semiconductor Equations.- 6.1 Finite Differences.- 6.2 Finite Boxes.- 6.3 Finite Elements.- 6.4 The Transient Problem.- 6.5 Designing a Mesh.- 6.6 Referenees.- 7. The Solution of Systems of Nonlinear Algebraic Equations.- 7.1 Newton's Method and Extensions.- 7.2 Iterative Methods.- 7.3 Referenees.- 8. The Solution of Sparse Systems of Linear Equations.- 8.1 Direct Methods.- 8.2 Ordering Methods.- 8.3 Relaxation Methods.- 8.4 Alternating Direction Methods.- 8.5 Strongly Implicit Methods.- 8.6 Convergence Acceleration of Iterative Methods.- 8.7 Referenees.- 9. A Glimpse on Results.- 9.1 Breakdown Phenomena in MOSFET's.- 9.2 The Rate Effect in Thyristors.- 9.3 Referenees.- Author Index.- Table Index.

2,550 citations

Journal ArticleDOI
TL;DR: This work discusses the essential problem of random background charge and present possible solutions of SIMON, a single electron tunnel device and circuit simulator that is based on a Monte Carlo method.
Abstract: SIMON is a single electron tunnel device and circuit simulator that is based on a Monte Carlo method. It allows transient and stationary simulation of arbitrary circuits consisting of tunnel junctions, capacitors, and voltage sources of three kinds: constant, piecewise linearly time dependent, and voltage controlled. Cotunneling can be simulated either with a plain Monte Carlo method or with a combination of the Monte Carlo and master equation approach. A graphic user interface allows the quick and easy design of circuits with single-electron tunnel devices. Furthermore, as an example of the usage of SIMON, we discuss the essential problem of random background charge and present possible solutions.

373 citations

Journal ArticleDOI
TL;DR: MINIMOS as discussed by the authors is a software tool for numerical simulation of planar MOS transistors, which is able to calculate doping profiles from the technological parameters specified by the user, and a new mobility model has been implemented which takes into account the dependence on the impurity concentration, electric field, temperature and especially the distance to the Si-SiO 2 interface.
Abstract: We describe a user-oriented software tool-MINIMOS-for the two-dimensional numerical simulation of planar MOS transistors. The fundamental semiconductor equations are solved with sophisticated programming techniques to allow very low computer costs. The program is able to calculate the doping profiles from the technological parameters specified by the user. A new mobility model has been implemented which takes into account the dependence on the impurity concentration, electric field, temperature, and especially the distance to the Si-SiO 2 interface. The power of the program is shown by calculating the two-dimensional internal behavior of three MOST's with 1-µm gate length differing in respect to the ion-implantation steps. In this way, the threshold voltage shift by a shallow implantation and the suppression of punchthrough by a deep implantation are demonstrated. By calculating the output characteristics without and with mobility reduction, the essential influence of this effect is shown. From the subthreshold characteristics, the suppression of short-channel effects by ion implantation becomes apparent. The MINIMOS program is available for everyone for just the handling costs.

260 citations

Journal ArticleDOI
29 Apr 2003
TL;DR: A detailed review of various transport models proposed which account for the average carrier energy or temperature, highlighting the differences and similarities between the models, and shed some light on the critical issues associated with higher order transport models.
Abstract: Since Stratton published his famous paper four decades ago, various transport models have been proposed which account for the average carrier energy or temperature in one way or another. The need for such transport models arose because the traditionally used drift-diffusion model cannot capture nonlocal effects which gained increasing importance in modern miniaturized semiconductor devices. In the derivation of these models from Boltzmann's transport equation, several assumptions have to be made in order to obtain a tractable equation set. Although these assumptions may differ significantly, the resulting final models show various similarities, which has frequently led to confusion. We give a detailed review on this subject, highlighting the differences and similarities between the models, and we shed some light on the critical issues associated with higher order transport models.

259 citations

Book
01 Mar 1994
TL;DR: In this article, the authors identify the reasons why three-dimensional process simulators are not widely available, when 3-dimensional device simulators have been widely available and possible solutions are provided.
Abstract: This paper will identify the reasons three-dimensional process simulators are not widely available, when three-dimensional device simulators are widely available. There appear to be four major obstacles; metrology, models, numerics, and structural barriers. Each of these will be discussed and possible solutions will be provided.

183 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 1978
TL;DR: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.), and is a "must-have" reference for every serious programmer's digital library.
Abstract: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.). One of the best-selling programming books published in the last fifty years, "K&R" has been called everything from the "bible" to "a landmark in computer science" and it has influenced generations of programmers. Available now for all leading ebook platforms, this concise and beautifully written text is a "must-have" reference for every serious programmers digital library. As modestly described by the authors in the Preface to the First Edition, this "is not an introductory programming manual; it assumes some familiarity with basic programming concepts like variables, assignment statements, loops, and functions. Nonetheless, a novice programmer should be able to read along and pick up the language, although access to a more knowledgeable colleague will help."

2,120 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
TL;DR: In this article, a low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface is presented.
Abstract: There is a need among scientists and clinicians for low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully implantable multielectrode arrays has created the need for fully integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudoresistor element to amplify low-frequency signals down to the millihertz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit - the noise efficiency factor - for this amplifier and demonstrate that our VLSI implementation approaches this limit by selectively operating MOS transistors in either weak or strong inversion. The resulting amplifier, built in a standard 1.5-/spl mu/m CMOS process, passes signals from 0.025Hz to 7.2 kHz with an input-referred noise of 2.2 /spl mu/Vrms and a power dissipation of 80 /spl mu/W while consuming 0.16 mm/sup 2/ of chip area. Our design technique was also used to develop an electroencephalogram amplifier having a bandwidth of 30 Hz and a power dissipation of 0.9 /spl mu/W while maintaining a similar noise-power tradeoff.

1,572 citations

Journal ArticleDOI
TL;DR: The theoretical concepts, experimental tools, and applications of surface photovoltage (SPV) techniques are reviewed in detail in detail as discussed by the authors, where the theoretical discussion is divided into two sections: electrical properties of semiconductor surfaces and the second discusses SPV phenomena.

1,499 citations