scispace - formally typeset
Search or ask a question
Author

Sigrid D. Peyerimhoff

Bio: Sigrid D. Peyerimhoff is an academic researcher from University of Bonn. The author has contributed to research in topics: Ab initio & Excited state. The author has an hindex of 61, co-authored 451 publications receiving 17654 citations. Previous affiliations of Sigrid D. Peyerimhoff include University of Giessen & University of Mainz.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a configuration selection method for CI calculations is discussed and applied in which the energy lowering produced in a secular equation by the addition of a given test species to a series of dominant configurations is used as an ordering parameter.
Abstract: A configuration selection method for CI calculations is discussed and applied in which the energy lowering produced in a secular equation by the addition of a given test species to a series of dominant configurations is used as an ordering parameter. Configurations with energy lowerings below a given energy cut-off value are not included in the final secular equations but instead a method of estimating the combined effect of the neglected species on the corresponding non-selected CI results is developed. The influence of the choice of main configurations used in the selection process is given close examination as well as the importance of the MO basis employed in the treatment as a whole; in the latter case a non-iterative procedure for obtaining approximate natural orbitals for such calculations is suggested. The resulting configuration selection procedure is equally applicable to all types of electronic states in any nuclear geometry and the results of the associated CI calculations are seen to be essentially equivalent to a complete treatment in which all single- and double-excitation species with respect to aseries of dominant configurations in a given state are included.

1,126 citations

Journal ArticleDOI
TL;DR: In this article, a multi-reference double-excitation CI (MRD-CI) method is discussed and its results are compared with those of related techniques, which employs a configuration selection procedure to order the various generated species according to their energy-lowering capability and then uses an energy extrapolation procedure based on perturbation theory to obtain suitably accurate estimates of the eigenvalues of the entire MRD- CI space.
Abstract: Implementation of a multi-reference double-excitation CI (MRD-CI) method is discussed and its results are compared with those of related techniques. This approach employs a configuration selection procedure to order the various generated species according to their energy-lowering capability and then uses an energy extrapolation procedure based on perturbation theory to obtain suitably accurate estimates of the eigenvalues of the entire MRD-CI space. By employing this selection procedure it is possible to test from 2000 to 4000 symmetry-adapted functions (SAF's) per second of CPU time on an IBM 370–168 system, thereby allowing one to apply the energy extrapolation quite conveniently to CI spaces consisting of several hundred thousand species. By systematically increasing the number of reference configurations in the MRD-CI it is clear that the limit of a full CI can be approached and as a result such a computational procedure appears to be generally valid for any type of electronic state and for any nuclea...

852 citations

Journal ArticleDOI
TL;DR: In this paper, a method of extrapolating the CI energy of large configuration subspaces is discussed and illustrated in a series of examples, while the influence of the remaining elements in the subspace is accounted for in a statistical manner.
Abstract: A method of extrapolating the CI energy of large configuration subspaces is discussed and illustrated in a series of examples. Secular equations for selected groups of configurations are solved, while the influence of the remaining elements in the subspace is accounted for in a statistical manner. Criteria for judging the reliability of the extrapolation technique are developed and evidence is presented underscoring the need to go beyond the level of truncated CI calculations in obtaining excitation energy and potential surface results.

832 citations

Journal ArticleDOI
TL;DR: An energy decomposition scheme based on the block-localized wave function (BLW) method is proposed in this paper, which is the definition and the full optimization of the diabatic state wave function, where the charge transfer among interacting molecules is deactivated.
Abstract: An energy decomposition scheme based on the block-localized wave function (BLW) method is proposed. The key of this scheme is the definition and the full optimization of the diabatic state wave function, where the charge transfer among interacting molecules is deactivated. The present energy decomposition (ED), BLW-ED, method is similar to the Morokuma decomposition scheme in definition of the energy terms, but differs in implementation and the computational algorithm. In addition, in the BLW-ED approach, the basis set superposition error is fully taken into account. The application of this scheme to the water dimer and the lithium cation–water clusters reveals that there is minimal charge transfer effect in hydrogen-bonded complexes. At the HF/aug-cc-PVTZ level, the electrostatic, polarization, and charge-transfer effects contribute 65%, 24%, and 11%, respectively, to the total bonding energy (−3.84 kcal/mol) in the water dimer. On the other hand, charge transfer effects are shown to be significant in Lewis acid–base complexes such as H3NSO3 and H3NBH3. In this work, the effect of basis sets used on the energy decomposition analysis is addressed and the results manifest that the present energy decomposition scheme is stable with a modest size of basis functions.

339 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive configuration-interaction study employing an AO basis including f polarization functions is undertaken for the 1Σ+ and 3Π states of the CN+ ion at their respective equilibrium geometries.

292 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness).
Abstract: The calculation of accurate electron affinities (EAs) of atomic or molecular species is one of the most challenging tasks in quantum chemistry. We describe a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness). This procedure involves the use of the recently proposed correlation‐consistent basis sets augmented with functions to describe the more diffuse character of the atomic anion coupled with a straightforward, uniform expansion of the reference space for multireference singles and doubles configuration‐interaction (MRSD‐CI) calculations. Comparison with previous results and with corresponding full CI calculations are given. The most accurate EAs obtained from the MRSD‐CI calculations are (with experimental values in parentheses) hydrogen 0.740 eV (0.754), boron 0.258 (0.277), carbon 1.245 (1.263), oxygen 1.384 (1.461), and fluorine 3.337 (3.401). The EAs obtained from the MR‐SD...

12,969 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules is evaluated.
Abstract: This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at ??HOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The ??HOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential

4,480 citations

Journal ArticleDOI
TL;DR: In this article, a new internally contracted direct multiconfiguration-reference configuration interaction (MRCI) method is described which allows the use of much larger reference spaces than any previous MRCI method.
Abstract: A new internally contracted direct multiconfiguration–reference configuration interaction (MRCI) method is described which allows the use of much larger reference spaces than any previous MRCI method. The configurations with two electrons in the external orbital space are generated by applying pair excitation operators to the reference wave function as a whole, while the singly external and internal configurations are standard uncontracted spin eigenfunctions. A new efficient and simple method for the calculation of the coupling coefficients is used, which is well suited for vector machines, and allows the recalculation of all coupling coefficients each time they are needed. The vector H⋅c is computed partly in a nonorthogonal configuration basis. In order to test the accuracy of the internally contracted wave functions, benchmark calculations have been performed for F−, H2O, NH2, CH2, CH3, OH, NO, N2, and O2 at various geometries. The deviations of the energies obtained with internally contracted and uncontracted MRCI wave functions are mostly smaller than 1 mH and typically 3–5 times smaller than the deviations between the uncontracted MRCI and the full CI. Dipole moments, electric dipole polarizabilities, and electronic dipole transition moments calculated with uncontracted and contracted MRCI wave functions also are found to be in close agreement. The efficiency of the method is demonstrated in large scale calculations for the CN, NH3, CO2, and Cr2 molecules. In these calculations up to 3088 reference configurations and up to 154 orbitals were employed. The biggest calculation is equivalent to an uncontracted MRCI with more than 78 million configurations.

3,375 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the local density functional formalism and some of its applications and discuss the reasons for the successes and failures of the local-density approximation and some modifications.
Abstract: A scheme that reduces the calculations of ground-state properties of systems of interacting particles exactly to the solution of single-particle Hartree-type equations has obvious advantages. It is not surprising, then, that the density functional formalism, which provides a way of doing this, has received much attention in the past two decades. The quality of the energy surfaces calculated using a simple local-density approximation for exchange and correlation exceeds by far the original expectations. In this work, the authors survey the formalism and some of its applications (in particular to atoms and small molecules) and discuss the reasons for the successes and failures of the local-density approximation and some of its modifications.

3,285 citations

Journal ArticleDOI
TL;DR: In this article, a density matrix formulation of the super-CI MCSCF method is presented, where the MC expansion is assumed to be complete in an active subset of the orbital space, and the corresponding CI problem is solved by a direct scheme using the unitary group approach.

3,120 citations