scispace - formally typeset
Search or ask a question
Author

Silke S. Hings

Bio: Silke S. Hings is an academic researcher from Max Planck Society. The author has contributed to research in topics: Aerosol & Mass concentration (chemistry). The author has an hindex of 9, co-authored 9 publications receiving 1788 citations.

Papers
More filters
Journal ArticleDOI
02 Jun 2006-Science
TL;DR: Size-resolved cloud condensation nuclei spectra measured for various aerosol types at a non-urban site in Germany showed that CCN concentrations are mainly determined by the aerosol number size distribution.
Abstract: Size-resolved cloud condensation nuclei (CCN) spectra measured for various aerosol types at a non-urban site in Germany showed that CCN concentrations are mainly determined by the aerosol number size distribution. Distinct variations of CCN activation with particle chemical composition were observed but played a secondary role. When the temporal variation of chemical effects on CCN activation is neglected, variation in the size distribution alone explains 84 to 96% of the variation in CCN concentrations. Understanding that particles' ability to act as CCN is largely controlled by aerosol size rather than composition greatly facilitates the treatment of aerosol effects on cloud physics in regional and global models.

876 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the development and first field deployment of a new version of the AMS, which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information.
Abstract: We report the development and first field deployment of a new version of the Aerosol Mass Spectrometer (AMS), which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information. The instrument was constructed by interfacing the well-characterized Aerodyne AMS vacuum system, particle focusing, sizing, and evaporation/ionization components, with a compact TOFWERK orthogonal acceleration reflectron time-of-flight mass spectrometer. In this time-of-flight aerosol mass spectrometer (TOF-AMS) aerosol particles are focused by an aerodynamic lens assembly as a narrow beam into the vacuum chamber. Non-refractory particle components flash-vaporize after impaction onto the vaporizer and are ionized by electron impact. The ions are continuously guided into the source region of the time-of-flight mass spectrometer, where ions are extracted into the TOF section at a repetition rate of 83.3 kHz. Each extraction generates a complete mass spect...

663 citations

Journal ArticleDOI
TL;DR: In this article, the chemical composition and chemically resolved size distributions of fine aerosol particles were measured at high time resolution (5min) with a time-of-flight aerosol mass spectrometer (TOF-AMS) during the New Year's 2005 fireworks in Mainz, central Germany.

200 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL) information under various measurement conditions.
Abstract: . Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Quadrupole Aerosol Mass Spectrometer (Q-AMS) and a compact Time-of-Flight Aerosol Mass Spectrometer (c-ToF-AMS). Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL) information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride) up to 0.5 μg m−3 (organics) for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate) and 0.03 μg m−3 (ammonium, organics). The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Areskutan in central Sweden in 2003.
Abstract: The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Areskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

Journal ArticleDOI
TL;DR: In this article, organic aerosol data acquired by the AMS in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA components.
Abstract: Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.

2,167 citations

Journal ArticleDOI
TL;DR: In this paper, a method to describe the relationship between particle dry diameter and cloud condensation activity using a single hygroscopicity parameter is presented. But this method is limited to single and multi-component particles with varying amounts of inorganic, organic and surface active compounds.
Abstract: We present a method to describe the relationship between particle dry diameter and cloud condensation nu- clei (CCN) activity using a single hygroscopicity parameter . Values of the hygroscopicity parameter are between 0.5 and 1.4 for highly-CCN-active salts such as sodium chlo- ride, between 0.01 and 0.5 for slightly to very hygroscopic organic species, and 0 for nonhygroscopic components. Ob- servations indicate that atmospheric particulate matter is typ- ically characterized by 0.1<< 0.9. If compositional data are available and if the hygroscopicity parameter of each com- ponent is known, a multicomponent hygroscopicity parame- ter can be computed by weighting component hygroscopic- ity parameters by their volume fractions in the mixture. In the absence of information on chemical composition, exper- imental data for complex, multicomponent particles can be fitted to obtain the hygroscopicity parameter. The hygroscop- icity parameter can thus also be used to conveniently model the CCN activity of atmospheric particles, including those containing insoluble components. We confirm the applica- bility of the hygroscopicity parameter and its mixing rule by applying it to published hygroscopic diameter growth fac- tor and CCN-activation data for single- and multi-component particles containing varying amounts of inorganic, organic and surface active compounds. We suggest that may be fit to CCN data assuming s/a=0.072 J m 2 and present a table of derived for this value and T=298.15 K. The predicted hygroscopicities for mixtures that contain the surfactant ful- vic acid agree within uncertainties with the measured values. It thus appears that this approach is adequate for predict- ing CCN activity of mixed particles containing surface ac- tive materials, but the generality of this assumption requires further verification.

2,011 citations