scispace - formally typeset
Author

Silvana Di Sabatino

Bio: Silvana Di Sabatino is an academic researcher from University of Bologna. The author has contributed to research in topic(s): Turbulence & Boundary layer. The author has an hindex of 27, co-authored 91 publication(s) receiving 3836 citation(s). Previous affiliations of Silvana Di Sabatino include University of Notre Dame & University of Salento.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form But the question remains whether there is value in the less accurate data they generate This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation

469 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors examined published literature on neighbourhood air quality modifications by green interventions and provided a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure.
Abstract: Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

350 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the influence of tree planting with different tree crown porosity was investigated and the results obtained in this work by combining wind tunnel experiments and CFD based simulations suggest ways to obtain quantitative information for assessment, planning and implementation of exposure mitigation using trees in urban street canyons.
Abstract: This paper is devoted to the study of flow and traffic exhaust dispersion in urban street canyons with avenue-like tree planting. The influence of tree planting with different crown porosity was investigated. Wind tunnel experiments for perpendicular approaching flow showed that avenue-like tree planting cause increases in exhaust concentrations at the leeward wall as tree crowns reduce the vortex found in the outer regions of the tree-free street canyon and the vertically entering volume flow rate at the canyon–roof top interface. This results in less ventilation and consequently larger concentrations in proximity of the leeward wall. At the windward wall, decreases in concentration are due to the upward moving stream in front of the leeward wall which extends farther into the skimming above roof flow and is better mixed. The clean air entrained in front of the windward wall mixes with air inside the street canyon leading to smaller concentrations. Experiments performed in the wind tunnel with different tree crown porosities did not indicate substantial changes in the flow and concentration fields. The porous model crowns investigated behaved almost like impermeable objects when arranged in a sheltered position and wind speeds are relatively small as in the street canyon. The above described experiments have been also investigated by means of numerical simulations with the CFD code FLUENT™, rarely applied to this type of problems. The standard k–ɛ turbulence model and the Reynolds Stress Model were used for flow while the Eulerian advection diffusion scheme has been used for dispersion. Both models reproduced qualitatively the main aspects found in wind tunnel experiments, even though they underestimated flow velocities. Improvement of CFD dispersion performance was obtained by increasing the diffusivity through the turbulent Schmidt number Sct. Overall we found that the k–ɛ model failed to capture the complex structure of dispersion process in the presence of tree planting as it would require unphysical low Sct values. On the other hand the RSM turbulence model agreed fairly well with experiments by slightly reducing the standard Sct. The results obtained in this work by combining wind tunnel experiments and CFD based simulations to investigate this novel aspect of research suggest ways to obtain quantitative information for assessment, planning and implementation of exposure mitigation using trees in urban street canyons.

310 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the link between building height and ground-level pollutants in street networks of high-rise urban areas has been investigated, and the results show that building height variab...
Abstract: Studies are still required to understand how rural/marine wind remove ground-level pollutants released uniformly in street networks of high-rise urban areas. The link between building height variab ...

241 citations

Journal ArticleDOI

[...]

TL;DR: The performance characteristics of several low-cost particle and gas monitoring sensors are reviewed and recommendations to end-users for making proper sensor selection are provided by summarizing the capabilities and limitations of such sensors.
Abstract: Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network.

231 citations


Cited by
More filters

[...]

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

[...]

01 Apr 1992
TL;DR: In this paper, the authors proposed a monotone integrated large eddy simulation approach, which incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question.
Abstract: Fluid dynamic turbulence is one of the most challenging computational physics problems because of the extremely wide range of time and space scales involved, the strong nonlinearity of the governing equations, and the many practical and important applications. While most linear fluid instabilities are well understood, the nonlinear interactions among them makes even the relatively simple limit of homogeneous isotropic turbulence difficult to treat physically, mathematically, and computationally. Turbulence is modeled computationally by a two-stage bootstrap process. The first stage, direct numerical simulation, attempts to resolve the relevant physical time and space scales but its application is limited to diffusive flows with a relatively small Reynolds number (Re). Using direct numerical simulation to provide a database, in turn, allows calibration of phenomenological turbulence models for engineering applications. Large eddy simulation incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question. A promising approach to large eddy simulation involves the use of high-resolution monotone computational fluid dynamics algorithms such as flux-corrected transport or the piecewise parabolic method which have intrinsic subgrid turbulence models coupled naturally to the resolved scales in the computed flow. The physical considerations underlying and evidence supporting this monotone integrated large eddy simulation approach are discussed.

849 citations

Journal ArticleDOI

[...]

TL;DR: This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics and discusses the fundamental and applied aspects of this two-pronged approach.
Abstract: Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

699 citations

Journal ArticleDOI

[...]

Chun Chen1, Bin Zhao1
TL;DR: In this article, the authors provide an up-to-date revision for both experiment and modeling on relationship between indoor and outdoor particles, using three different parameters: indoor/outdoor (I/O) ratio, infiltration factor and penetration factor.
Abstract: Epidemiologic evidence indicates a relationship between outdoor particle exposure and adverse health effects, while most people spend 85–90% of their time indoors, thus understanding the relationship between indoor and outdoor particles is quite important. This paper aims to provide an up-to-date revision for both experiment and modeling on relationship between indoor and outdoor particles. The use of three different parameters: indoor/outdoor (I/O) ratio, infiltration factor and penetration factor, to assess the relationship between indoor and outdoor particles were reviewed. The experimental data of the three parameters measured both in real houses and laboratories were summarized and analyzed. The I/O ratios vary considerably due to the difference in size-dependent indoor particle emission rates, the geometry of the cracks in building envelopes, and the air exchange rates. Thus, it is difficult to draw uniform conclusions as detailed information, which make I/O ratio hardly helpful for understanding the indoor/outdoor relationship. Infiltration factor represents the equilibrium fraction of ambient particles that penetrates indoors and remains suspended, which avoids the mixture with indoor particle sources. Penetration factor is the most relevant parameter for the particle penetration mechanism through cracks and leaks in the building envelope. We investigate the methods used in previously published studies to both measure and model the infiltration and penetration factors. We also discuss the application of the penetration factor models and provide recommendations for improvement.

614 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements, while low vegetation close to sources can improve air quality by increasing deposition.
Abstract: Urban vegetation affects air quality through influencing pollutant deposition and dispersion Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing eg on urban street canyons and crossings or vegetation barriers adjacent to traffic sources There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes

563 citations