scispace - formally typeset
Search or ask a question
Author

Silvana Di Sabatino

Bio: Silvana Di Sabatino is an academic researcher from University of Bologna. The author has contributed to research in topics: Turbulence & Environmental science. The author has an hindex of 27, co-authored 91 publications receiving 3836 citations. Previous affiliations of Silvana Di Sabatino include University of Notre Dame & University of Salento.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of irrigation on the precipitation in the Po Valley of northern Italy, focusing on northern Italy due to its vulnerability to heatwaves and dependency on local water sources.

12 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) to derive the height where flux becomes zero.
Abstract: Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study therefore suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) to derive the height where flux becomes zero. It is shown that the standard deviations of all wind speed components (therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases where the vertical and horizontal heat fluxes are compensated. Turbulence above the wind-speed maximum is decoupled from the surface, and follows the classical local z-less predictions for stably stratified boundary layer.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the application of Computational Fluid Dynamics (CFD) and integral approaches to the study of effects of obstacles on pollutant dispersion from a point source placed within an idealised urban area (MUST) is discussed.
Abstract: This paper looks at the application of Computational Fluid Dynamics (CFD) and integral approaches to the study of effects of obstacles on pollutant dispersion from a point source placed within an idealised urban area (MUST). This study is part of a modelling exercise within the COST Action 732. Numerical results are compared with wind tunnel data. We use the CFD code FLUENT and the dispersion model ADMS-Urban. The CFD model predicts concentrations more accurately than the integral model. However, both models results satisfy accepted statistical criteria, showing that those criteria should not be the only way of evaluating a model.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors used wind tunnel experiments and computational fluid dynamics simulations to study the flow adjustment and the variation of city breathability through urban-like models with different building packing densities.

12 citations

Journal ArticleDOI
TL;DR: In this article, a set of wind tunnel measurements of the drag force and its spatial distribution along aligned arrays of cubes of height H and planar area index λp (air gap between cubes) equal to 0.2H was presented and analyzed.

12 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics and discusses the fundamental and applied aspects of this two-pronged approach.
Abstract: Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

908 citations

01 Apr 1992
TL;DR: In this paper, the authors proposed a monotone integrated large eddy simulation approach, which incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question.
Abstract: Fluid dynamic turbulence is one of the most challenging computational physics problems because of the extremely wide range of time and space scales involved, the strong nonlinearity of the governing equations, and the many practical and important applications. While most linear fluid instabilities are well understood, the nonlinear interactions among them makes even the relatively simple limit of homogeneous isotropic turbulence difficult to treat physically, mathematically, and computationally. Turbulence is modeled computationally by a two-stage bootstrap process. The first stage, direct numerical simulation, attempts to resolve the relevant physical time and space scales but its application is limited to diffusive flows with a relatively small Reynolds number (Re). Using direct numerical simulation to provide a database, in turn, allows calibration of phenomenological turbulence models for engineering applications. Large eddy simulation incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question. A promising approach to large eddy simulation involves the use of high-resolution monotone computational fluid dynamics algorithms such as flux-corrected transport or the piecewise parabolic method which have intrinsic subgrid turbulence models coupled naturally to the resolved scales in the computed flow. The physical considerations underlying and evidence supporting this monotone integrated large eddy simulation approach are discussed.

849 citations

Journal ArticleDOI
Chun Chen1, Bin Zhao1
TL;DR: In this article, the authors provide an up-to-date revision for both experiment and modeling on relationship between indoor and outdoor particles, using three different parameters: indoor/outdoor (I/O) ratio, infiltration factor and penetration factor.

755 citations

Journal ArticleDOI
TL;DR: In this paper, a review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements, while low vegetation close to sources can improve air quality by increasing deposition.

739 citations