scispace - formally typeset
Search or ask a question
Author

Silvia Muraro

Other affiliations: University of Milan
Bio: Silvia Muraro is an academic researcher from Istituto Nazionale di Fisica Nucleare. The author has contributed to research in topics: Particle therapy & Charged particle. The author has an hindex of 21, co-authored 86 publications receiving 2773 citations. Previous affiliations of Silvia Muraro include University of Milan.


Papers
More filters
Proceedings ArticleDOI
30 Mar 2007
TL;DR: The physics model implemented inside the FLUKA code is briefly described in this paper, with emphasis on hadronic interactions, and examples of the capabilities of the code are presented including basic (thin target) and complex benchmarks.
Abstract: The physics model implemented inside the FLUKA code are briefly described, with emphasis on hadronic interactions. Examples of the capabilities of the code are presented including basic (thin target) and complex benchmarks.

1,268 citations

Journal ArticleDOI
S. Amerio1, Salvatore Amoruso, M. Antonello, P. Aprili, Mario Armenante, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, Elisa Bernardini, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, A. Cesana7, A. Cesana2, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, Rosalía Cid5, David B. Cline9, K. Cieślik, A. G. Cocco, D. Corti1, Z. Dai, C. De Vecchi4, A. Dabrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, A. D. Ferella, Arnaud Ferrari6, Arnaud Ferrari2, Federico Ferri, G. Fiorillo, S. Galli, D. García Gámez5, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, H. Kuna-Ciskal, M. Laffranchi, J. Łagoda10, Z. Li8, B. Lisowski9, F. Lu8, J. Ma8, Gianpiero Mangano, G. Mannocchi, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, D. Mazza, A. Melgarejo5, Alessandro Menegolli4, G. Meng1, M. Messina, Jerzy W. Mietelski, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, M. Nicoletto1, J. A. Nowak, G. Nurzia, C. Osuna5, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek, M. C. Prata4, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri9, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, R. Sulej12, M. Szeptycka, M. Szarska, M. Terrani7, M. Terrani2, G. C. Trinchero, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, X. Yang9, A. Zalewska, J. Zalipska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass as mentioned in this paper.
Abstract: We have constructed and operated the ICARUS T600 liquid argon (LAr) time projection chamber (TPC). The ICARUS T600 detector is the largest LAr TPC ever built, with a size of about 500 tons of fully imaging mass. The design and assembly of the detector relied on industrial support and represents the applications of concepts matured in laboratory tests to the kton scale. The ICARUS T600 was commissioned for a technical run that lasted about 3 months. During this period all the detector features were extensively tested with an exposure to cosmic-rays at surface with a resulting data collection of about 30 000 events. The detector was developed as the first element of a modular design. Thanks to the concept of modularity, it will be possible to realize a detector with several ktons active mass, to act as an observatory for astroparticle and neutrino physics at the Gran Sasso Underground Laboratory and a second-generation nucleon decay experiment. In this paper a description of the ICARUS T600 is given, detailing its design specifications, assembly procedures and acceptance tests. Commissioning procedures and results of the technical run are also reported, as well as results from the off-line event reconstruction.

478 citations

Journal ArticleDOI
Salvatore Amoruso, M. Antonello, P. Aprili, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, M. Buzzanca, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, Alessandra Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, K. Cieślik, David B. Cline9, A. G. Cocco, Z. Dai, C. De Vecchi4, A. Dąbrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, Arnaud Ferrari2, Arnaud Ferrari6, Federico Ferri, G. Fiorillo, S. Galli, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, M. Laffranchi, J. Łagoda10, Z. Li8, F. Lu8, J. Ma8, Gianpiero Mangano, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, G. Meng1, M. Messina, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale11, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek12, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, R. Sulej13, M. Szarska, M. Szeptycka, Mario Terrani7, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, A. Zalewska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: In this article, electron recombination in liquid argon (LAr) has been studied by means of charged particle tracks collected in various ICARUS LAr TPC prototypes and the dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence.
Abstract: Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out.

142 citations

Journal ArticleDOI
Salvatore Amoruso, M. Antonello, P. Aprili, F. Arneodo, A. Badertscher, B. Baiboussinov1, M. Baldo Ceolin1, G. Battistoni2, B. Bekman3, P. Benetti4, Elisa Bernardini, M. Bischofberger, A. Borio di Tigliole4, R. Brunetti4, Riccardo Bruzzese, Antonio Bueno5, M. Buzzanca, E. Calligarich4, Mario Campanelli, F. Carbonara, C. Carpanese, D. Cavalli2, F. Cavanna, P. Cennini6, S. Centro1, Alessandra Cesana7, Chang Chen8, D. Chen8, D.B. Chen1, Yi-Chun Chen8, X Cieślik, David B. Cline9, A. G. Cocco, Z. Dai, C. De Vecchi4, A. Dabrowska, A. Di Cicco, R. Dolfini4, Antonio Ereditato, Marta Felcini, Arnaud Ferrari6, Arnaud Ferrari2, F. Ferri, G. Fiorillo, S. Galli, Y. Ge, D. Gibin1, A. Gigli Berzolari4, I. Gil-Botella, Krzysztof M. Graczyk, L. Grandi4, A. Guglielmi1, K. He8, J. Holeczek3, Xiaojing Huang8, Cezary Juszczak, D. Kielczewska10, Jan Kisiel3, T. Kozłowski, M. Laffranchi, J. Łagoda10, Z. Li8, F. Lu8, J. Ma8, Gianpiero Mangano, M. Markiewicz, A. Martinez de la Ossa5, C. Matthey9, F. Mauri4, G. Meng1, M. Messina, C. Montanari4, Silvia Muraro2, S. Navas-Concha5, G. Nurzia, S. Otwinowski9, Q. Ouyang8, O. Palamara, D. Pascoli1, L. Periale11, G. Piano Mortari, A. Piazzoli4, P. Picchi11, F. Pietropaolo1, W. Półchłopek12, T. Rancati2, A. Rappoldi4, G.L. Raselli4, J. Rico, E. Rondio, Massimo Rossella4, André Rubbia, C. Rubbia4, Paola Sala2, R. Santorelli, D. A. Scannicchio4, E. Segreto, Youngho Seo9, F. Sergiampietri, Jan T. Sobczyk, N. Spinelli, J. Stepaniak, M. Szarska, M. Szeptycka, Michal Szleper, Mario Terrani7, Raffaele Velotta, Sandro Ventura1, C. Vignoli4, Hui Wang9, Xuan Wang, J. Woo9, G. Xu8, Z. Xu8, A. Zalewska, J. Zalipska, Chao Zhang8, Q. Zhang8, S. Zhen8, W. Zipper3 
TL;DR: In this paper, the drift electron lifetime of the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC) during a technical run that took place on surface in Pavia (Italy).
Abstract: The results reported in this paper are based on the analysis of the data recorded with the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC), during a technical run that took place on surface in Pavia (Italy). We include results from the linearity, uniformity and calibration of the electronics, measurements on the electron drift velocity in LAr at different electric fields, as well as the LAr purity achievement of the detector. Two complementary techniques were used to measure the drift electron lifetime inside the active volume: the first, from the data of a purity monitor, gives a measurement localized in space; the second, based on the study of the signals produced by long minimum ionizing tracks crossing the detector, provides a LAr volume averaged value. Both methods yield consistent results over the whole data taking period and are compatible with an uniform LAr purity over the whole volume. The maximal drift electron lifetime value was recorded before the run stop and was about 1.8 ms. From an interpretation of the observed drift electron lifetime as a function of time, we conclude that the adopted technology would allow for drift distances exceeding 3 m.

84 citations

Journal ArticleDOI
Salvatore Amoruso1, M. Antonello2, P. Aprili, F. Arneodo, A. Badertscher3, B. Baiboussinov4, M. Baldo Ceolin4, G. Battistoni5, B. Bekman6, P. Benetti7, M. Bischofberger3, A. Borio di Tigliole7, R. Brunetti7, Riccardo Bruzzese1, A. Bueno8, A. Bueno3, E. Calligarich7, M. Campanelli3, F. Carbonara1, C. Carpanese3, D. Cavalli5, F. Cavanna2, P. Cennini9, S. Centro4, Alessandra Cesana10, Chang Chen, D. Chen, D.B. Chen4, Yi-Chun Chen, Rosalía Cid8, K. Cieślik11, David B. Cline12, Alfredo G. Cocco1, Z. Dai3, C. De Vecchi7, A. Dabrowska11, A. Di Cicco1, R. Dolfini7, A. Ereditato1, Marta Felcini3, A. D. Ferella2, Arnaud Ferrari5, Arnaud Ferrari9, F. Ferri2, G. Fiorillo1, S. Galli2, D. Garcia-Gamez8, Y. Ge3, D. Gibin4, A. Gigli Berzolari7, I. Gil-Botella3, Krzysztof M. Graczyk13, L. Grandi7, A. Guglielmi4, K. He, J. Holeczek6, Xiaojing Huang, Cezary Juszczak13, D. Kielczewska14, Jan Kisiel6, T. Kozłowski, M. Łaffranchi3, J. Lagoda14, Z. Li, F. Lu, J. Ma, G. Mangano1, G. Mannocchi, M. Markiewicz11, A. Martinez de la Ossa8, C. Matthey12, F. Mauri7, A. Melgarejo8, Alessandro Menegolli7, G. Meng4, M. Messina3, C. Montanari7, Silvia Muraro5, S. Navas-Concha8, S. Navas-Concha3, J. A. Nowak13, C. Osuna8, S. Otwinowski12, Q. Ouyang, O. Palamara, D. Pascoli4, L. Periale15, G. Piano Mortari2, A. Piazzoli7, P. Picchi15, F. Pietropaolo4, W. Półchłopek16, M. C. Prata7, T. Rancati, A. Rappoldi7, G.L. Raselli7, J. Rico3, E. Rondio, Massimo Rossella7, André Rubbia3, C. Rubbia7, Paola Sala3, Paola Sala5, R. Santorelli1, D. A. Scannicchio7, E. Segreto2, Youngho Seo12, F. Sergiampietri, Jan T. Sobczyk13, Nicola Spinelli1, J. Stepaniak, R. Sulej17, M. Szarska11, M. Szeptycka, Mario Terrani10, Raffaele Velotta1, Sandro Ventura4, C. Vignoli7, Hui Wang12, Xuan Wang1, J. Woo12, G. Xu, Z. Xu, A. Zalewska11, Chao Zhang, Q. Zhang, S. Zhen, W. Zipper6 
TL;DR: In this article, the µ decay energy spectrum from a sample of stopping µ events acquired during the ICARUS detector was studied and the detector quality was validated through relevant physics mea- surements.
Abstract: Examples are given which prove the ICARUS detector quality through relevant physics mea- surements. We study the µ decay energy spectrum from a sample of stopping µ events acquired during

79 citations


Cited by
More filters
Book
01 Jan 1957

1,574 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott1, Jalal Abdallah1, A. A. Abdelalim1  +2582 moreInstitutions (23)
TL;DR: The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid, including supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors.
Abstract: The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

1,514 citations

Journal ArticleDOI
TL;DR: The FLUKA Monte Carlo code as discussed by the authors is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects, which requires the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles.

1,511 citations

Proceedings ArticleDOI
30 Mar 2007
TL;DR: The physics model implemented inside the FLUKA code is briefly described in this paper, with emphasis on hadronic interactions, and examples of the capabilities of the code are presented including basic (thin target) and complex benchmarks.
Abstract: The physics model implemented inside the FLUKA code are briefly described, with emphasis on hadronic interactions. Examples of the capabilities of the code are presented including basic (thin target) and complex benchmarks.

1,268 citations

Journal ArticleDOI
Marcos Daniel Actis1, G. Agnetta2, Felix Aharonian3, A. G. Akhperjanian  +682 moreInstitutions (109)
TL;DR: The ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes as mentioned in this paper, which is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100GeV and above 100 TeV.
Abstract: Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

1,006 citations