scispace - formally typeset
Search or ask a question
Author

Silvia Paciotti

Bio: Silvia Paciotti is an academic researcher from University of Perugia. The author has contributed to research in topics: Synucleinopathies & Parkinson's disease. The author has an hindex of 18, co-authored 40 publications receiving 1147 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain.
Abstract: In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease-the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain. A combination of multiple CSF biomarkers has emerged as an accurate diagnostic and prognostic model. With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed.

313 citations

Journal ArticleDOI
TL;DR: The results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD.
Abstract: To assess the discriminating power of multiple cerebrospinal fluid (CSF) biomarkers for Parkinson's disease (PD), we measured several proteins playing an important role in the disease pathogenesis. The activities of β-glucocerebrosidase and other lysosomal enzymes, together with total and oligomeric α-synuclein, and total and phosphorylated tau, were thus assessed in CSF of 71 PD patients and compared to 45 neurological controls. Activities of β-glucocerebrosidase, β-mannosidase, β-hexosaminidase, and β-galactosidase were measured with established enzymatic assays, while α-synuclein and tau biomarkers were evaluated with immunoassays. A subset of PD patients (n = 44) was also screened for mutations in the β-glucocerebrosidase-encoding gene (GBA1). In the PD group, β-glucocerebrosidase activity was reduced (P < 0.05) and patients at earlier stages showed lower enzymatic activity (P < 0.05); conversely, β-hexosaminidase activity was significantly increased (P < 0.05). Eight PD patients (18%) presented GBA1 sequence variations; 3 of them were heterozygous for the N370S mutation. Levels of total α-synuclein were significantly reduced (P < 0.05) in PD, in contrast to increased levels of α-synuclein oligomers, with a higher oligomeric/total α-synuclein ratio in PD patients when compared with controls (P < 0.001). A combination of β-glucocerebrosidase activity, oligomeric/total α-synuclein ratio, and age gave the best performance in discriminating PD from neurological controls (sensitivity 82%; specificity 71%, area under the receiver operating characteristic curve = 0.87). These results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD.

205 citations

Journal ArticleDOI
TL;DR: The combination of CSF lysosomal markers with α‐synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD.
Abstract: Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society.

125 citations

Journal ArticleDOI
TL;DR: The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysOSomal dysfunction and PD pathogenesis, favoring the possible role ofGCase as biomarker of synucleinopathy.
Abstract: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined. Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (−23%) and substantia nigra (−12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra. No other lysosomal hydrolase defects were determined. The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysosomal dysfunction and PD pathogenesis, favoring the possible role of GCase as biomarker of synucleinopathy. Mapping the lysosomal enzyme activities across different brain areas can further contribute to the understanding of the role of lysosomal derangement in PD and other synucleinopathies.

123 citations

Journal ArticleDOI
TL;DR: The objectives of this study were to confirm whether there is reduced β‐glucocerebrosidase activity in the CSF of GBA1 mutation carrier and noncarrier PD patients and verify if other lysosomal enzymes show altered activity inThe CSF.
Abstract: Background Reduced β-glucocerebrosidase activity was observed in postmortem brains of both GBA1 mutation carrier and noncarrier Parkinson's disease patients, suggesting that lower β-glucocerebrosidase activity is a key feature in the pathogenesis of PD. The objectives of this study were to confirm whether there is reduced β-glucocerebrosidase activity in the CSF of GBA1 mutation carrier and noncarrier PD patients and verify if other lysosomal enzymes show altered activity in the CSF. Methods CSF β-glucocerebrosidase, cathepsin D, and β-hexosaminidase activities were measured in 79 PD and 61 healthy controls from the BioFIND cohort. The whole GBA1 gene was sequenced. Results Enzyme activities were normalized according to CSF protein content (specific activity). β-glucocerebrosidase specific activity was significantly decreased in PD versus controls (-28%, P < 0.001). GBA1 mutations were found in 10 of 79 PD patients (12.7%) and 3 of 61 controls (4.9%). GBA1 mutation carrier PD patients showed significantly lower β-glucocerebrosidase specific activity versus noncarriers. β-glucocerebrosidase specific activity was also decreased in noncarrier PD patients versus controls (-25%, P < 0.001). Cathepsin D specific activity was lower in PD versus controls (-21%, P < 0.001). β-Hexosaminidase showed a similar trend. β-Glucocerebrosidase specific activity fairly discriminated PD from controls (area under the curve, 0.72; sensitivity, 0.67; specificity, 0.77). A combination of β-glucocerebrosidase, cathepsin D, and β-hexosaminidase improved diagnostic accuracy (area under the curve, 0.77; sensitivity, 0.71; specificity, 0.85). Lower β-glucocerebrosidase and β-hexosaminidase specific activities were associated with worse cognitive performance. Conclusions CSF β-glucocerebrosidase activity is reduced in PD patients independent of their GBA1 mutation carrier status. Cathepsin D and β-hexosaminidase were also decreased. The possible link between altered CSF lysosomal enzyme activities and cognitive decline deserves further investigation. © 2017 International Parkinson and Movement Disorder Society

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.
Abstract: Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.

1,701 citations

Journal ArticleDOI
TL;DR: Overall, the frequency of MPS varies for each population due to differences in ethnic backgrounds and/or founder effects that affect the birth prevalence of each type of M PS, as seen for other rare genetic diseases.

996 citations

Journal ArticleDOI
TL;DR: This multiple‐author article provides a historical state‐of‐the‐art account of what has been achieved, the current situation, and how to progress toward resolving Parkinson's disease.
Abstract: This article reviews and summarizes 200 years of Parkinson's disease. It comprises a relevant history of Dr. James Parkinson's himself and what he described accurately and what he missed from today's perspective. Parkinson's disease today is understood as a multietiological condition with uncertain etiopathogenesis. Many advances have occurred regarding pathophysiology and symptomatic treatments, but critically important issues are still pending resolution. Among the latter, the need to modify disease progression is undoubtedly a priority. In sum, this multiple-author article, prepared to commemorate the bicentenary of the shaking palsy, provides a historical state-of-the-art account of what has been achieved, the current situation, and how to progress toward resolving Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.

523 citations

Journal ArticleDOI
TL;DR: Plasma pTau181 concentrations are elevated specifically in patients diagnosed with Alzheimer’s disease compared to those diagnosed with frontotemporal lobar degeneration or elderly controls, supporting its further development as a blood-based biomarker for AD.
Abstract: With the potential development of new disease-modifying Alzheimer's disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD.

425 citations

Journal ArticleDOI
TL;DR: Induced pluripotent stem cells are generated from subjects with GD and PD harbouring GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration are provided.
Abstract: Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration.

420 citations