scispace - formally typeset
Search or ask a question
Author

Silvia Peñaranda

Bio: Silvia Peñaranda is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Enterovirus & Echovirus. The author has an hindex of 15, co-authored 21 publications receiving 3821 citations. Previous affiliations of Silvia Peñaranda include National Center for Immunization and Respiratory Diseases.

Papers
More filters
Journal ArticleDOI
30 May 2003-Science
TL;DR: Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closelyrelated to any of the previouslycharacterized coronaviruses.
Abstract: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.

2,420 citations

Journal ArticleDOI
TL;DR: The online typing-tools reliably assign genotypes for enterovirus type or norovirus genotype and/or variant, with profile alignment, construction of phylogenetic trees and bootstrap validation makes these tools robust to ongoing evolution.

660 citations

Journal ArticleDOI
TL;DR: From this information, species-specific RT-PCR primers were developed that can be used to rapidly screen collections of enterovirus isolates to identify species of interest.
Abstract: The 65 serotypes of human enteroviruses are classified into four species, Human enterovirus (HEV) A to D, based largely on phylogenetic relationships in multiple genome regions. The 3′-non-translated region of enteroviruses is highly conserved within a species but highly divergent between species. From this information, species-specific RT-PCR primers were developed that can be used to rapidly screen collections of enterovirus isolates to identify species of interest. The four primer pairs were 100 % specific when tested against enterovirus prototype strains and panels of isolates of known serotype (a total of 193 isolates). For evaluation in a typical application, the species-specific primers were used to screen 186 previously uncharacterized non-polio enterovirus isolates. The HEV-B primers amplified 68·3 % of isolates, while the HEV-A and HEV-C primers accounted for 9·7 and 11·3 % of isolates, respectively; no isolates were amplified with the HEV-D primers. Twelve isolates (6·5 %) were amplified by more than one primer set and eight isolates (4·3 %) were not amplified by any of the four primer pairs. Serotypes were identified by partial sequencing of the VP1 capsid gene, and in every case sequencing confirmed that the species-specific PCR result was correct; the isolates that were amplified by more than one species-specific primer pair were mixtures of two (11 isolates) or three (one isolate) species of viruses. The eight isolates that were not amplified by the species-specific primers comprised four new serotypes (EV76, EV89, EV90 and EV91) that appear to be unique members of HEV-A based on VP1, 3D and 3′-non-translated region sequences.

189 citations

Journal ArticleDOI
TL;DR: Similarity plots, individual sequence comparisons and phylogenetic analyses demonstrate a high degree of capsid sequence similarity within each of these three pairs of prototype strains, providing a molecular basis for the observed antigenic relationships.
Abstract: The species Human enterovirus A (HEV-A) in the family Picornaviridae consists of coxsackieviruses (CV) A2-A8, A10, A12, A14 and A16 and enterovirus 71. Complete genome sequences for the prototype strains of the 10 serotypes whose sequences were not represented in public databases have been determined and analysed in conjunction with previously available complete sequences in GenBank. Members of HEV-A are monophyletic relative to all other human enterovirus species in all regions of the genome except in the 5' non-translated region (NTR), where they are known to cluster with members of HEV-B. The HEV-A prototype strains were about 66 to 86 % identical to one another in deduced capsid amino acid sequence. Antigenic cross-reactivity has been reported between CVA3-Olson and CVA8-Donovan, between CVA5-Swartz and CVA12-Texas-12 and between CVA16-G-10 and EV71-BrCr. Similarity plots, individual sequence comparisons and phylogenetic analyses demonstrate a high degree of capsid sequence similarity within each of these three pairs of prototype strains, providing a molecular basis for the observed antigenic relationships. In several cases, phylogenies constructed from the structural (P1) and non-structural regions of the genome (P2 and P3) are incongruent. The incongruent phylogenies and the similarity plot analyses imply that recombination has played a role in the evolution of the HEV-A prototype strains. CVA6-Gdula clearly contains sequences that are also present in CVA10-Kowalik and CVA12-Texas-12, suggesting that these three strains have a shared evolutionary history despite their lack of similarity in the capsid region.

175 citations

Journal ArticleDOI
TL;DR: The results suggest that recombination is a frequent event during enterovirus evolution but that there are genetic restrictions that may influence recombinational compatibility.
Abstract: RNA recombination has been shown to occur during circulation of enteroviruses, but most studies have focused on poliovirus. To examine the role of recombination in the evolution of the coxsackie B viruses (CVB), we determined the partial sequences of four genomic intervals for multiple clinical isolates of each of the six CVB serotypes isolated from 1970 to 1996. The regions sequenced were the 5-nontranslated region (5-NTR) (350 nucleotides [nt]), capsid (VP4-VP2, 416 nt, and VP1, 320 nt), and polymerase (3D, 491 nt). Phylogenetic trees were constructed for each genome region, using the clinical isolate sequences and those of the prototype strains of all 65 enterovirus serotypes. The partial VP1 sequences of each CVB serotype were monophyletic with respect to serotype, as were the VP4-VP2 sequences, in agreement with previously published studies. In some cases, however, incongruent tree topologies suggested that intraserotypic recombination had occurred between the sequenced portions of VP2 and VP1. Outside the capsid region, however, isolates of the same serotype were not monophyletic, indicating that recombination had occurred between the 5-NTR and capsid, the capsid and 3D, or both. Almost all clinical isolates were recombinant relative to the prototype strain of the same serotype. All of the recombination partners appear to be members of human enterovirus species B. These results suggest that recombination is a frequent event during enterovirus evolution but that there are genetic restrictions that may influence recombinational compatibility.

136 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Journal ArticleDOI
TL;DR: The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
Abstract: A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.

4,809 citations

Journal ArticleDOI
TL;DR: A molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses is provided.
Abstract: During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.

2,983 citations

Journal ArticleDOI
28 Oct 2005-Science
TL;DR: It is reported that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak, and these viruses display greater genetic variation than SARS-CoV isolated from humans or from civets.
Abstract: Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.

2,263 citations

Journal ArticleDOI
TL;DR: The concerted and coordinated response that contained SARS is a triumph for global public health and provides a new paradigm for the detection and control of future emerging infectious disease threats.
Abstract: The severe acute respiratory syndrome (SARS) is responsible for the first pandemic of the 21st century. Within months after its emergence in Guangdong Province in mainland China, it had affected more than 8000 patients and caused 774 deaths in 26 countries on five continents. It illustrated dramatically the potential of air travel and globalization for the dissemination of an emerging infectious disease and highlighted the need for a coordinated global response to contain such disease threats. We review the cause, epidemiology, and clinical features of the disease.

2,167 citations