scispace - formally typeset
Search or ask a question
Author

Silvio De Siena

Bio: Silvio De Siena is an academic researcher from University of Salerno. The author has contributed to research in topics: Quantum entanglement & Quantum. The author has an hindex of 14, co-authored 69 publications receiving 1058 citations. Previous affiliations of Silvio De Siena include Istituto Nazionale di Fisica Nucleare.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of theoretical and experimental aspects of multiphoton quantum optics can be found in this paper, where the authors focus on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations and for the practical applications of modern quantum mechanics.

272 citations

Journal ArticleDOI
TL;DR: In this paper, the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states are derived based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix.
Abstract: We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state.

170 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the purity of Gaussian states of single-mode continuous variable systems and showed that the joint measurement of two conjugate quadratures is sufficient and sufficient to determine the purity at any time.
Abstract: We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments.
Abstract: We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing.
Abstract: Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks.

76 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
01 Dec 1949-Nature
TL;DR: Wentzel and Jauch as discussed by the authors described the symmetrization of the energy momentum tensor according to the Belinfante Quantum Theory of Fields (BQF).
Abstract: To say that this is the best book on the quantum theory of fields is no praise, since to my knowledge it is the only book on this subject But it is a very good and most useful book The original was written in German and appeared in 1942 This is a translation with some minor changes A few remarks have been added, concerning meson theory and nuclear forces, also footnotes referring to modern work in this field, and finally an appendix on the symmetrization of the energy momentum tensor according to Belinfante Quantum Theory of Fields Prof Gregor Wentzel Translated from the German by Charlotte Houtermans and J M Jauch Pp ix + 224, (New York and London: Interscience Publishers, Inc, 1949) 36s

2,935 citations

Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations