scispace - formally typeset
Search or ask a question
Author

Siming Li

Other affiliations: Tsinghua University
Bio: Siming Li is an academic researcher from Stony Brook University. The author has contributed to research in topics: Natural language & Service provider. The author has an hindex of 7, co-authored 10 publications receiving 1646 citations. Previous affiliations of Siming Li include Tsinghua University.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed system to automatically generate natural language descriptions from images is very effective at producing relevant sentences for images and generates descriptions that are notably more true to the specific image content than previous work.
Abstract: We present a system to automatically generate natural language descriptions from images. This system consists of two parts. The first part, content planning, smooths the output of computer vision-based detection and recognition algorithms with statistics mined from large pools of visually descriptive text to determine the best content words to use to describe an image. The second step, surface realization, chooses words to construct natural language sentences based on the predicted content and general statistics from natural language. We present multiple approaches for the surface realization step and evaluate each using automatic measures of similarity to human generated reference descriptions. We also collect forced choice human evaluations between descriptions from the proposed generation system and descriptions from competing approaches. The proposed system is very effective at producing relevant sentences for images. It also generates descriptions that are notably more true to the specific image content than previous work.

791 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: A system to automatically generate natural language descriptions from images that exploits both statistics gleaned from parsing large quantities of text data and recognition algorithms from computer vision that is very effective at producing relevant sentences for images.
Abstract: We posit that visually descriptive language offers computer vision researchers both information about the world, and information about how people describe the world. The potential benefit from this source is made more significant due to the enormous amount of language data easily available today. We present a system to automatically generate natural language descriptions from images that exploits both statistics gleaned from parsing large quantities of text data and recognition algorithms from computer vision. The system is very effective at producing relevant sentences for images. It also generates descriptions that are notably more true to the specific image content than previous work.

564 citations

Proceedings Article
23 Jun 2011
TL;DR: A simple yet effective approach to automatically compose image descriptions given computer vision based inputs and using web-scale n-grams, which indicates that it is viable to generate simple textual descriptions that are pertinent to the specific content of an image, while permitting creativity in the description -- making for more human-like annotations than previous approaches.
Abstract: Studying natural language, and especially how people describe the world around them can help us better understand the visual world. In turn, it can also help us in the quest to generate natural language that describes this world in a human manner. We present a simple yet effective approach to automatically compose image descriptions given computer vision based inputs and using web-scale n-grams. Unlike most previous work that summarizes or retrieves pre-existing text relevant to an image, our method composes sentences entirely from scratch. Experimental results indicate that it is viable to generate simple textual descriptions that are pertinent to the specific content of an image, while permitting creativity in the description -- making for more human-like annotations than previous approaches.

371 citations

Proceedings ArticleDOI
22 Aug 2016
TL;DR: Owan is presented, a novel traffic management system that optimizes wide-area bulk transfers with centralized joint control of the optical and network layers with efficient algorithms to jointly optimize optical circuit setup, routing and rate allocation, and dynamically adapt them to traffic demand changes.
Abstract: Bulk transfer on the wide-area network (WAN) is a fundamental service to many globally-distributed applications. It is challenging to efficiently utilize expensive WAN bandwidth to achieve short transfer completion time and meet mission-critical deadlines. Advancements in software-defined networking (SDN) and optical hardware make it feasible and beneficial to quickly reconfigure optical devices in the optical layer, which brings a new opportunity for traffic management on the WAN. We present Owan, a novel traffic management system that optimizes wide-area bulk transfers with centralized joint control of the optical and network layers. \sysname can dynamically change the network-layer topology by reconfiguring the optical devices. We develop efficient algorithms to jointly optimize optical circuit setup, routing and rate allocation, and dynamically adapt them to traffic demand changes. We have built a prototype of Owan with commodity optical and electrical hardware. Testbed experiments and large-scale simulations on two ISP topologies and one inter-DC topology show that \sysname completes transfers up to 4.45x faster on average, and up to 1.36x more transfers meet their deadlines, as compared to prior methods that only control the network layer.

128 citations

Journal ArticleDOI
TL;DR: This work finds an embedding of the network such that greedy routing using the virtual coordinates guarantees delivery, thus eliminating the necessity of any recovery methods and represents the first practical solution for using virtual coordinates for greedy routing in a sensor network.
Abstract: Motivated by mobile sensor networks as in participatory sensing applications, we are interested in developing a practical, lightweight solution for routing in a mobile network. While greedy routing is robust to mobility, it may get stuck in a local minimum, which then requires non-trivial recovery methods. We find an embedding of the network such that greedy routing using the virtual coordinates guarantees delivery, thus eliminating the necessity of any recovery methods. Our contribution is to replace the in-network computation of the embedding by a preprocessing of the domain before network deployment and encode the map of network domain to virtual coordinate space by using a small number of parameters which can be preloaded to all sensor nodes. As a result, the map is only dependent on the network domain and is independent of the network connectivity. Each node can directly compute or update its virtual coordinates by applying the locally stored map on its geographical coordinates. This represents the first practical solution for using virtual coordinates for greedy routing in a sensor network and could be easily extended to the case of a mobile network. The paper describes algorithmic innovations as well as implementations on a real testbed.

14 citations


Cited by
More filters
Proceedings Article
06 Jul 2015
TL;DR: An attention based model that automatically learns to describe the content of images is introduced that can be trained in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound.
Abstract: Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr9k, Flickr30k and MS COCO.

6,485 citations

Posted Content
TL;DR: This paper proposed an attention-based model that automatically learns to describe the content of images by focusing on salient objects while generating corresponding words in the output sequence, which achieved state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.
Abstract: Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.

5,896 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: In this paper, a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation is proposed to generate natural sentences describing an image, which can be used to automatically describe the content of an image.
Abstract: Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. For instance, while the current state-of-the-art BLEU-1 score (the higher the better) on the Pascal dataset is 25, our approach yields 59, to be compared to human performance around 69. We also show BLEU-1 score improvements on Flickr30k, from 56 to 66, and on SBU, from 19 to 28. Lastly, on the newly released COCO dataset, we achieve a BLEU-4 of 27.7, which is the current state-of-the-art.

5,095 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A model that generates natural language descriptions of images and their regions based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding is presented.
Abstract: We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

3,996 citations

Posted Content
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

3,935 citations