scispace - formally typeset
Search or ask a question
Author

Simon Blanchet

Bio: Simon Blanchet is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Population & Biodiversity. The author has an hindex of 38, co-authored 120 publications receiving 4833 citations. Previous affiliations of Simon Blanchet include Laval University & Institut de recherche pour le développement.


Papers
More filters
Journal ArticleDOI
TL;DR: The evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations are reviewed.
Abstract: Many biologists are calling for an 'extended evolutionary synthesis' that would 'modernize the modern synthesis' of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions.

620 citations

Journal ArticleDOI
TL;DR: It is shown that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in drivingFish invasions in the world's river systems.
Abstract: Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the “human activity” hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the “biotic resistance” hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the “biotic acceptance” hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin) using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the “human activity” hypothesis. In contrast, our results do not provide support for either the “biotic acceptance” or the “biotic resistance” hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems. In view of our findings, we fear massive invasions in developing countries with a growing economy as already experienced in developed countries. Anticipating such potential biodiversity threats should therefore be a priority.

513 citations

Journal ArticleDOI
TL;DR: Whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory is reviewed, and it is suggested that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems.
Abstract: Connectivity is classically considered an emergent property of landscapes encapsulating individuals’ flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi-causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor-quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species- and landscape-specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.

488 citations

Journal ArticleDOI
TL;DR: The complexity of Drosophila decision-making suggests an unprecedented level of cognition in invertebrates, which has implications for evolution given that socially learned mate preferences may lead to reproductive isolation, setting the stage for speciation.

212 citations

Journal ArticleDOI
TL;DR: It is demonstrated that current homogenization of the freshwater fish faunas is still low at the world scale but reaches substantial levels in some highly invaded river basins from the Nearctic and Palearctic realms, stressing the need for further understanding of the ecological consequences of homogenized species assemblages.
Abstract: The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: Recent progress in understanding invasion impacts and management is highlighted, and the challenges that the discipline faces in its science and interactions with society are discussed.
Abstract: Study of the impacts of biological invasions, a pervasive component of global change, has generated remarkable understanding of the mechanisms and consequences of the spread of introduced populations. The growing field of invasion science, poised at a crossroads where ecology, social sciences, resource management, and public perception meet, is increasingly exposed to critical scrutiny from several perspectives. Although the rate of biological invasions, elucidation of their consequences, and knowledge about mitigation are growing rapidly, the very need for invasion science is disputed. Here, we highlight recent progress in understanding invasion impacts and management, and discuss the challenges that the discipline faces in its science and interactions with society.

2,346 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems.
Abstract: Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.

2,293 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an open-source implementation of structural equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite of interrelated variables.
Abstract: Summary Ecologists and evolutionary biologists rely on an increasingly sophisticated set of statistical tools to describe complex natural systems. One such tool that has gained significant traction in the biological sciences is structural equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite of interrelated variables. Evaluation of SEMs has historically relied on covariances among variables, rather than the values of the data points themselves. While this approach permits a wide variety of model forms, it limits the incorporation of detailed specifications. Recent developments have allowed for the simultaneous implementation of non-normal distributions, random effects and different correlation structures using local estimation, but this process is not yet automated and consequently, evaluation can be prohibitive with complex models. Here, I present a fully documented, open-source package piecewiseSEM, a practical implementation of confirmatory path analysis for the r programming language. The package extends this method to all current (generalized) linear, (phylogenetic) least-square, and mixed effects models, relying on familiar r syntax. I also provide two worked examples: one involving random effects and temporal autocorrelation, and a second involving phylogenetically independent contrasts. My goal is to provide a user-friendly and tractable implementation of SEM that also reflects the ecological and methodological processes generating data.

2,194 citations